scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nonlinear ultrasonic characterization of fatigue microstructures

01 Jan 2001-International Journal of Fatigue (Elsevier)-Vol. 23, pp 487-490
TL;DR: In this article, a model of ultrasonic wave-dislocation dipole interactions is developed that quantifies the wave distortion by means of a material nonlinearity parameter (beta).
About: This article is published in International Journal of Fatigue.The article was published on 2001-01-01. It has received 404 citations till now. The article focuses on the topics: Ultrasonic sensor & Dislocation.
Citations
More filters
Book
11 Aug 2014
TL;DR: The semi-analytical finite element method (SAFE) has been used for guided wave modeling as discussed by the authors, which has been shown to be useful in the analysis and display of non-destructive testing.
Abstract: Preface Acknowledgments 1. Introduction 2. Dispersion principles 3. Unbounded isotropic and anisotropic media 4. Reflection and refraction 5. Oblique incidence 6. Waves in plates 7. Surface and subsurface waves 8. Finite element method for guided wave mechanics 9. The semi-analytical finite element method (SAFE) 10. Guided waves in hollow cylinders 11. Circumferential guided waves 12. Guided waves in layered structures 13. Source influence on guided wave excitation 14. Horizontal shear 15. Guided waves in anisotropic media 16. Guided wave phased arrays in piping 17. Guided waves in viscoelastic media 18. Ultrasonic vibrations 19. Guided wave array transducers 20. Introduction to guided wave nonlinear methods 21. Guided wave imaging methods Appendix A: ultrasonic nondestructive testing principles, analysis and display technology Appendix B: basic formulas and concepts in the theory of elasticity Appendix C: physically based signal processing concepts for guided waves Appendix D: guided wave mode and frequency selection tips.

823 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review of guided wave based structural health monitoring (SHM) and highlight the future directions and open areas of research in guided wave-based SHM.
Abstract: The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness,. is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM.

664 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the overall progress in nonlinear ultrasonic technique with the brief introduction of basic principle in the application of each nonlinear Ultrasonic phenomenon, including higher harmonic generation, subharmonic generation, nonlinear resonance, or mixed frequency response.
Abstract: The nondestructive assessment of the damage that occurs in components during service plays a key role for condition monitoring and residual life estimation of in-service components/structures. Ultrasound has been widely utilized for this; however most of these conventional methods using ultrasonic characteristics in the linear elastic region are only sensitive to gross defects but much less sensitive to micro-damage. Recently, the nonlinear ultrasonic technique, which uses nonlinear ultrasonic behavior such as higher-harmonic generation, subharmonic generation, nonlinear resonance, or mixed frequency response, has been studied as a positive method for overcoming this limitation. In this paper, overall progress in this technique is reviewed with the brief introduction of basic principle in the application of each nonlinear ultrasonic phenomenon.

581 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a robust experimental procedure to track the evolution of fatigue damage in a nickel-base superalloy with the acoustic nonlinearity parameter, β, and demonstrates its effectiveness by making repeatable measurements of β in multiple specimens, subjected to both high and low-cycle fatigue.
Abstract: This research develops a robust experimental procedure to track the evolution of fatigue damage in a nickel-base superalloy with the acoustic nonlinearity parameter, β, and demonstrates its effectiveness by making repeatable measurements of β in multiple specimens, subjected to both high- and low-cycle fatigue. The measurement procedure developed in this research is robust in that it is based on conventional piezoelectric contact transducers, which are readily available off the shelf, and it offers the potential for field applications. In addition, the measurement procedure enables the user to isolate sample nonlinearity from measurement system nonlinearity. The experimental results show that there is a significant increase in β linked to the high plasticity of low-cycle fatigue, and illustrate how these nonlinear ultrasonic measurements quantitatively characterize the damage state of a specimen in the early stages of fatigue. The high-cycle fatigue results are less definitive (the increase in β is not as...

428 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic non-destructive evaluation techniques.
Abstract: This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter, $$\beta $$ . In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to $$\beta $$ , and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.

271 citations


Cites background from "Nonlinear ultrasonic characterizati..."

  • ...dipoles [45,46], precipitate-pinned dislocations [16,47–49],...

    [...]

  • ...[118,128], and later expanded to consider dislocation motion, the development of dislocation substructures [129], and dislocation dipole contribution to β [45]....

    [...]

  • ...ered dislocation monopole and dipole contributions to β [45]....

    [...]

  • ...Extensive experimental work has used SHG measurements of β to monitor fatigue damage with a variety of wave types and in a variety of materials, such as aluminum alloys [45,51,117,118,129], nickel-based superalloys [38,63,74], carbon steel [42,119,133], stainless steel [134], titanium alloys [79,81,86], Inconel [79], and single crystal copper [62]....

    [...]

References
More filters
Book
01 Jan 1954
TL;DR: Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, and it remains the definitive treatment of the subject as mentioned in this paper. But it is not the most complete work on crystal lattice dynamics.
Abstract: Although Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, the book remains the definitive treatment of the subject. It begins with a brief introduction to atomic forces, lattice vibrations and elasticity, and then breaks off into four sections. The first section deals with the general statistical mechanics of ideal lattices, leading to the electric polarizability and to the scattering of light. The second section deals with the properties of long lattice waves, the third with thermal properties, and the fourth with optical properties.

7,756 citations

BookDOI
01 Jan 1982
TL;DR: The Review of Progress in Quantitative NDE (ROPQN) as mentioned in this paper is the world's leading conference in reporting annually new research and development results in quantitative NDE and promotes communication between the research and engineering communities and emphasize current reporting of work in progress.
Abstract: The Review of Progress in Quantitative NDE is the world's leading conference in reporting annually new research and development results in quantitative NDE. The conference reports on both fundamental and applied advances in NDE and promotes communication between the research and engineering communities and emphasize current reporting of work in progress. Attendees include representatives of academia (including students), industry, and government with approximately one-half coming from the United States and the other half from overseas. This volume represents the best report of ongoing work that is available anywhere. Connections and overlap with the medical diagnostic community are highlighted.

1,989 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the volume fraction occupied by the persistent slip bands was linearly related to the plastic strain amplitude, and that the PSBs adapted themselves to the applied amplitude by adjusting the relative amounts of the two phases.
Abstract: Single crystals of pure copper oriented for single slip were fatigued in air at room temperature at low constant plastic strain amplitudes in the range 0·1 % ≤ e p≤ 0·6%. After a few thousand cycles the specimens entered what appeared to be an equilibrium state which contained two phases: a hard and almost inactive ‘matrix’ and the softer ‘persistent slip bands’ (PSBs) into which the deformation tended to concentrate. In the equilibrium state the stress amplitude, the shape of the stress-strain loop and the volume fraction of the specimen occupied by the PSBs were invariant. Furthermore, the volume fraction occupied by the PSBs was found to be linearly related to the plastic strain amplitude. Thus, no matter what the average strain amplitude in the crystal (so long as both phases were present) the PSBs suffered a fixed amplitude which was measured as 0·90%; the specimen adapted itself to the applied amplitude by adjusting the relative amounts of the two phases. A number of predictions of this mod...

386 citations

Journal ArticleDOI
TL;DR: In this article, the dislocation contribution to the generation of the second harmonic of an ultrasonic wave in solids is measured through the changes, as a function of static bias stress, in the amplitude of a fundamental wave (10 Mc/sec compressional wave) propagating in the specimen.
Abstract: The experimental evidence and the associated theory are presented for the dislocation contribution to the generation of the second harmonic of an ultrasonic wave in solids. The contribution is measured through the changes, as a function of static bias stress, in the amplitude of the second harmonic of a fundamental wave (10 Mc/sec compressional wave) propagating in the specimen.In aluminum single crystals the amplitude of the second harmonic, for a given amplitude of the fundamental, changes markedly with static bias stresses ranging from 0 to 106 dyn/cm2. In alloys, there are essentially no changes of the amplitude of the second harmonic even for bias stresses up to 107 dyn/cm2. These observations are consistent with the predicted dependence of the amplitude on dislocation loop length and on the static stress. The effects of small amounts of plastic deformation were consistent with the proposed model.

267 citations

Journal ArticleDOI
TL;DR: In this paper, structural structures characteristic of persistent slip bands were observed in the interior of polycrystalline copper after fatigue at low strain amplitudes, within the plateau on the cyclic stress-strain curve.

217 citations