scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nonlocal damage theory

01 Oct 1987-Journal of Engineering Mechanics-asce (American Society of Civil Engineers)-Vol. 113, Iss: 10, pp 1512-1533
TL;DR: In this paper, the authors proposed a nonlocal damage theory, which is based on the nonlocal treatment of damage from the local treatment of elastic behavior, and the only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of a material.
Abstract: In the usual local finite element analysis, strain softening causes spurious mesh sensitivity and incorrect convergence when the element is refined to vanishing size. In a previous continuum formulation, these incorrect features were overcome by the imbricate nonlocal continuum, which, however, introduced some unnecessary computational complications due to the fact that all response was treated as nonlocal. The key idea of the present nonlocal damage theory is to subject to nonlocal treatment only those variables that control strain softening, and to treat the elastic part of the strain as local. The continuum damage mechanics formulation, convenient for separating the nonlocal treatment of damage from the local treatment of elastic behavior, is adopted in the present work. The only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of the material. Avoidance of spurious mesh ...
Citations
More filters
Journal ArticleDOI
TL;DR: The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations as mentioned in this paper.
Abstract: Modeling of the evolution of distributed damage such as microcracking, void formation, and softening frictional slip necessitates strain-softening constitutive models. The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations. A great variety of nonlocal models have appeared during the last two decades. This paper reviews the progress in the nonlocal models of integral type, and discusses their physical justifications, advantages, and numerical applications.

1,171 citations

Journal ArticleDOI
TL;DR: In this paper, a modified regularized formulation of the Ambrosio-Tortorelli type was proposed to avoid crack interpenetration and predicts asymmetric results in traction and in compression.
Abstract: This paper presents a modified regularized formulation of the Ambrosio–Tortorelli type to introduce the crack non-interpenetration condition in the variational approach to fracture mechanics proposed by Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (8), 1319–1342]. We focus on the linear elastic case where the contact condition appears as a local unilateral constraint on the displacement jump at the crack surfaces. The regularized model is obtained by splitting the strain energy in a spherical and a deviatoric parts and accounting for the sign of the local volume change. The numerical implementation is based on a standard finite element discretization and on the adaptation of an alternate minimization algorithm used in previous works. The new regularization avoids crack interpenetration and predicts asymmetric results in traction and in compression. Even though we do not exhibit any gamma-convergence proof toward the desired limit behavior, we illustrate through several numerical case studies the pertinence of the new model in comparison to other approaches.

964 citations


Cites background from "Nonlocal damage theory"

  • ...Smeared crack (or continuum) approaches, include damage models (see e.g. Jirasek, 1998; Pijaudier-Cabot and Bazant, 1987; Lorentz and Andrieux, 1999) and diffuse interface (or phase-field) models (Aranson et al....

    [...]

  • ...Smeared crack (or continuum) approaches, include damage models (see e.g. Jirasek, 1998; Pijaudier-Cabot and Bazant, 1987; Lorentz and Andrieux, 1999) and diffuse interface (or phase-field) models (Aranson et al., 2000; Hakim and Karma, 2009; Marconi and Jagla, 2005)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities, and propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem.
Abstract: In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith's theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost--about one order of magnitude--with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.

880 citations


Cites methods from "Nonlocal damage theory"

  • ...To overcome these drawbacks, various regularization techniques have been suggested, including non-local damage models [33–35]....

    [...]

Journal ArticleDOI
J.W. Ju1
TL;DR: In this paper, an energy-based coupled elastoplastic damage theory for ductile and brittle materials is presented, which employs irreversible thermodynamics and internal state variable theory for damage.

865 citations

Journal ArticleDOI
TL;DR: In this article, three different approaches are scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher-order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the adding of rate dependence.
Abstract: Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi‐brittle failure. In this contribution three different approaches will be scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher‐order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the addition of rate dependence. By means of a number of numerical simulations it will be investigated under which conditions these enriched continuum theories permit localization of deformation without losing ellipticity for static problems and hyperbolicity for dynamic problems. For the latter class of problems the crucial role of dispersion in wave propagation in strain‐softening media will also be highlighted.

598 citations

References
More filters
01 Jan 2008
TL;DR: In this article, fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened, which may be regarded as a way of expressing the energy adsorption in the energy balance approach.
Abstract: A method is presented in which fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened. This assumption may be regarded as a way of expressing the energy adsorption GC in the energy balance approach, but it is also in agreement with results of tension tests. As a demonstration the method has been applied to the bending of an unreinforced beam, which has led to an explanation of the difference between bending strength and tensile strength, and of the variation in bending strength with beam depth.

5,564 citations

Journal ArticleDOI
TL;DR: In this article, fracture mechanics is introduced into finite element analysis by means of a model where stresses are assumed to act across a crack as long as it is narrowly opened, which may be regarded as a way of expressing the energy adsorption in the energy balance approach.

5,505 citations

Journal ArticleDOI
01 May 1983
TL;DR: In this article, a fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed.
Abstract: A fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed. Only Mode I is considered. The fracture is modeled as a blunt smeard crack band, which is justified by the random nature of the microstructure. Simple triaxial stress-strain relations which model the strain-softening and describe the effect of gradual microcracking in the crack band are derived. It is shown that it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a single diagonal term of the complicance matrix. The limiting case of this matrix for complete (continuous) cracking is shown to be identical to the inverse of the well-known stiffness matrix for a perfectly cracked material. The material fracture properties are characterized by only three parameters—fracture energy, uniaxial strength limit and width of the crack band (fracture process zone), while the strain-softening modulus is a function of these parameters. A method of determining the fracture energy from measured complete stres-strain relations is also given. Triaxial stress effects on fracture can be taken into account. The theory is verified by comparisons with numerous experimental data from the literature. Satisfactory fits of maximum load data as well as resistance curves are achieved and values of the three material parameters involved, namely the fracture energy, the strength, and the width of crack band front, are determined from test data. The optimum value of the latter width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable for a homogeneous continuum modeling. The method of implementing the theory in a finite element code is also indicated, and rules for achieving objectivity of results with regard to the analyst's choice of element size are given. Finally, a simple formula is derived to predict from the tensile strength and aggregate size the fracture energy, as well as the strain-softening modulus. A statistical analysis of the errors reveals a drastic improvement compared to the linear fracture theory as well as the strength theory. The applicability of fracture mechanics to concrete is thus solidly established.

3,102 citations

Journal ArticleDOI
TL;DR: In this article, a theory of non-local elasticity is presented via the vehicles of global balance laws and the second law of thermodynamics via the use of a localized Clausius-Duhem inequality and a variational statement of Gibbsian global thermodynamics.

2,201 citations