scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Normal gut microbiota modulates brain development and behavior

TL;DR: It is demonstrated that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota, suggesting that the microbial colonization process initiates signaling mechanisms that affect neuronal circuits involved in motor control and anxiety behavior.
Abstract: Microbial colonization of mammals is an evolution-driven process that modulate host physiology, many of which are associated with immunity and nutrient intake. Here, we report that colonization by gut microbiota impacts mammalian brain development and subsequent adult behavior. Using measures of motor activity and anxiety-like behavior, we demonstrate that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota. This behavioral phenotype is associated with altered expression of genes known to be involved in second messenger pathways and synaptic long-term potentiation in brain regions implicated in motor control and anxiety-like behavior. GF mice exposed to gut microbiota early in life display similar characteristics as SPF mice, including reduced expression of PSD-95 and synaptophysin in the striatum. Hence, our results suggest that the microbial colonization process initiates signaling mechanisms that affect neuronal circuits involved in motor control and anxiety behavior.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Abstract: Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.

3,058 citations

Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: It is suggested that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in the microbiota.

2,832 citations


Cites background from "Normal gut microbiota modulates bra..."

  • ...…reviewed in Virgin and Todd, 2011), including susceptibility to influenza (Ichinohe et al., 2011), retrovirus transmission (Kane et al., 2011), colon cancer (Kostic et al., 2011), autoimmune demyelination (Kostic et al., 2011), and even behavior (Heijtz et al., 2011; Vijay-Kumar et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: Chronic treatment with L. rhamnosus induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice, highlighting the important role of bacteria in the bidirectional communication of the gut–brain axis.
Abstract: There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.

2,713 citations


Cites background from "Normal gut microbiota modulates bra..."

  • ...Moreover, it has been shown that the absence and/or modification of the gut microflora in mice affects the hypothalamic–pituitary–adrenal (HPA) axis response to stress (6, 7) and anxiety behavior (8, 9), which is important given the high comorbidity between functional gastrointestinal disorders and stress-related psychiatric disorders, such as anxiety and depression (10)....

    [...]

Journal ArticleDOI
TL;DR: The gut microbiota has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism.
Abstract: Establishing and maintaining beneficial interactions between the host and its associated microbiota are key requirements for host health. Although the gut microbiota has previously been studied in the context of inflammatory diseases, it has recently become clear that this microbial community has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism. The underlying molecular mechanisms of host-microorganism interactions remain largely unknown, but recent studies have begun to identify the key signalling pathways of the cross-species homeostatic regulation between the gut microbiota and its host.

2,585 citations

Journal ArticleDOI
19 Dec 2013-Cell
TL;DR: A gut-microbiome-brain connection in a mouse model of ASD is supported and a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders is identified.

2,507 citations


Cites background or result from "Normal gut microbiota modulates bra..."

  • ...GF mice 1460 Cell 155, 1451–1463, December 19, 2013 ª2013 Elsevier Inc. also exhibit widespread microbiota-dependent changes in brain gene expression, in pathways relevant to synaptic function and long-term potentiation (Diaz Heijtz et al., 2011)....

    [...]

  • ...A role for commensal bacteria in modulating behavior is supported by studies revealing differences between GF and SPF mice in anxiety-like (Diaz Heijtz et al., 2011), nociceptive (Amaral et al., 2008) and social behavior (Desbonnet et al., 2013)....

    [...]

References
More filters
Journal ArticleDOI
02 Jun 2006-Science
TL;DR: Using metabolic function analyses of identified genes, the human genome is compared with the average content of previously sequenced microbial genomes and humans are superorganisms whose metabolism represents an amalgamation of microbial and human attributes.
Abstract: The human intestinal microbiota is composed of 10(13) to 10(14) microorganisms whose collective genome ("microbiome") contains at least 100 times as many genes as our own genome. We analyzed approximately 78 million base pairs of unique DNA sequence and 2062 polymerase chain reaction-amplified 16S ribosomal DNA sequences obtained from the fecal DNAs of two healthy adults. Using metabolic function analyses of identified genes, we compared our human genome with the average content of previously sequenced microbial genomes. Our microbiome has significantly enriched metabolism of glycans, amino acids, and xenobiotics; methanogenesis; and 2-methyl-d-erythritol 4-phosphate pathway-mediated biosynthesis of vitamins and isoprenoids. Thus, humans are superorganisms whose metabolism represents an amalgamation of microbial and human attributes.

4,111 citations

Journal ArticleDOI
TL;DR: Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.
Abstract: Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.

3,511 citations


"Normal gut microbiota modulates bra..." refers background in this paper

  • ...Recent data indicate that pattern recognition receptors expressed on the microglia surface characterize one of the primary, common pathways by which neurotoxin signals affect neuronal tissues (34)....

    [...]

Journal ArticleDOI
25 May 2000-Nature
TL;DR: Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.
Abstract: Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1beta, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

3,404 citations


"Normal gut microbiota modulates bra..." refers background in this paper

  • ...Gut microbiota can elicit signals via the vagal nerve to the brain and vice versa (26, 27)....

    [...]

Journal ArticleDOI
20 Jun 2008-Science
TL;DR: It is indicated that host diet and phylogeny both influence bacterial diversity, which increases from carnivory to omnivory to herbivory; that bacterial communities codiversified with their hosts; and that the gut microbiota of humans living a modern life-style is typical of omnivorous primates.
Abstract: Mammals are metagenomic in that they are composed of not only their own gene complements but also those of all of their associated microbes. To understand the coevolution of the mammals and their indigenous microbial communities, we conducted a network-based analysis of bacterial 16S ribosomal RNA gene sequences from the fecal microbiota of humans and 59 other mammalian species living in two zoos and in the wild. The results indicate that host diet and phylogeny both influence bacterial diversity, which increases from carnivory to omnivory to herbivory; that bacterial communities codiversified with their hosts; and that the gut microbiota of humans living a modern life-style is typical of omnivorous primates.

3,072 citations


"Normal gut microbiota modulates bra..." refers background in this paper

  • ...One such environmental factor is the gut microbiota that, because of an evolutionary process, has adapted to coexist in commensal or symbiotic relationship with mammals (2)....

    [...]

Journal ArticleDOI
TL;DR: GF animals are protected from diet-induced obesity by two complementary but independent mechanisms that result in increased fatty acid metabolism: elevated levels of Fiaf, which induces Pgc-1α; and increased AMPK activity.
Abstract: The trillions of microbes that colonize our adult intestines function collectively as a metabolic organ that communicates with, and complements, our own human metabolic apparatus. Given the worldwide epidemic in obesity, there is interest in how interactions between human and microbial metabolomes may affect our energy balance. Here we report that, in contrast to mice with a gut microbiota, germ-free (GF) animals are protected against the obesity that develops after consuming a Western-style, high-fat, sugar-rich diet. Their persistently lean phenotype is associated with increased skeletal muscle and liver levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream targets involved in fatty acid oxidation (acetylCoA carboxylase; carnitine-palmitoyltransferase). Moreover, GF knockout mice lacking fasting-induced adipose factor (Fiaf), a circulating lipoprotein lipase inhibitor whose expression is normally selectively suppressed in the gut epithelium by the microbiota, are not protected from diet-induced obesity. Although GF Fiaf−/− animals exhibit similar levels of phosphorylated AMPK as their wild-type littermates in liver and gastrocnemius muscle, they have reduced expression of genes encoding the peroxisomal proliferator-activated receptor coactivator (Pgc-1α) and enzymes involved in fatty acid oxidation. Thus, GF animals are protected from diet-induced obesity by two complementary but independent mechanisms that result in increased fatty acid metabolism: (i) elevated levels of Fiaf, which induces Pgc-1α; and (ii) increased AMPK activity. Together, these findings support the notion that the gut microbiota can influence both sides of the energy balance equation, and underscore the importance of considering our metabolome in a supraorganismal context.

2,300 citations


"Normal gut microbiota modulates bra..." refers result in this paper

  • ...Our data extend previous observations from Sudo and coworkers who demonstrated that gut microbiota could modulate the levels of adreno-corticotrophic hormone (ACTH) in young mice (20), as well as findings from the Gordon laboratory reporting elevated home-cage activity counts in GF mice (21)....

    [...]

Related Papers (5)