scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Novel electric double-layer capacitor with a coaxial fiber structure.

01 Nov 2013-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 25, Iss: 44, pp 6436-6441
TL;DR: A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them.
Abstract: A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles.
Citations
More filters
Journal ArticleDOI
Wei Zeng1, Lin Shu1, Qiao Li1, Song Chen1, Fei Wang1, Xiaoming Tao1 
TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Abstract: Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption

1,626 citations

Journal ArticleDOI
TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Abstract: Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO3, and RbAg4I5/graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

1,397 citations

Journal ArticleDOI
TL;DR: A hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets is synthesized and subsequently used to make a supercapacitor with high volumetric energy density.
Abstract: Hierarchical hybrid carbon fibres consisting of a network of nitrogen-doped reduced graphene oxide and single-walled carbon nanotubes are synthesized and subsequently used to make a supercapacitor with high volumetric energy density.

1,276 citations

Journal ArticleDOI
TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Abstract: Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials The next sections briefly summarise the latest progress in flexible electrodes (ie, freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (ie, aqueous, organic, ionic liquids and redox-active gels) Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal–organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed The final section highlights current challenges and future perspectives on research in this thriving field

1,210 citations

Journal ArticleDOI
TL;DR: The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility and current progress made with graphene-based electrodes is summarized.
Abstract: The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

971 citations

References
More filters
Journal ArticleDOI
TL;DR: Supercapacitors are able to store and deliver energy at relatively high rates (beyond those accessible with batteries) because the mechanism of energy storage is simple charge-separation (as in conventional capacitors) as discussed by the authors.

3,620 citations

Journal ArticleDOI
TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices¹. By offering fast charging and discharging rates, and the ability to sustain millions of ²⁻⁵, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s⁻¹, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several micrometre-thick layer of nanostructured carbon onions⁶‚⁷ with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

2,469 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review and validate best practice test methods that accurately predict a material's performance, yet are flexible and quick enough to accommodate a wide range of material sample types and amounts.
Abstract: Ultracapacitors are rapidly being adopted for a wide range of electrical energy storage applications. While ultracapacitors are able to deliver high rates of charge and discharge, they are limited in the amount of energy stored. The capacity of ultracapacitors is largely determined by the electrode material and as a result research to improve the performance of electrode materials has dramatically increased. While test methods for packaged ultracapacitors are well developed, it is often impractical for the materials scientist to assemble full sized, packaged cells to test electrode materials. Methodology to reliably measure a material's performance for use as an ultracapacitor electrode is not well standardized with various techniques yielding widely varying results. In this manuscript, we review and validate best practice test methods that accurately predict a material's performance, yet are flexible and quick enough to accommodate a wide range of material sample types and amounts.

1,891 citations

Journal ArticleDOI
TL;DR: This dense carbon-nanotube material is advantageous for numerous applications, and here it is demonstrated its use as flexible heaters as well as supercapacitor electrodes for compact energy-storage devices.
Abstract: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes

1,851 citations

Journal ArticleDOI
17 Nov 2000-Science
TL;DR: A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers, and the obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.
Abstract: A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in surfactant solutions, recondensing the nanotubes in the flow of a polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow-induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.

1,728 citations