scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Novel Glutamatergic Modulators for the Treatment of Mood Disorders: Current Status

26 Apr 2021-CNS Drugs (Springer International Publishing)-Vol. 35, Iss: 5, pp 527-543
TL;DR: Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders as discussed by the authors, and most have shown relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics.
Abstract: The efficacy of standard antidepressants is limited for many patients with mood disorders such as major depressive disorder (MDD) and bipolar depression, underscoring the urgent need to develop novel therapeutics. Both clinical and preclinical studies have implicated glutamatergic system dysfunction in the pathophysiology of mood disorders. In particular, rapid reductions in depressive symptoms have been observed in response to subanesthetic doses of the glutamatergic modulator racemic (R,S)-ketamine in individuals with mood disorders. These results have prompted investigation into other glutamatergic modulators for depression, both as monotherapy and adjunctively. Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders. This manuscript gives a brief overview of the glutamate system and its relevance to rapid antidepressant response and discusses the existing clinical evidence for glutamate receptor-modulating agents, including (1) broad glutamatergic modulators ((R,S)-ketamine, esketamine, (R)-ketamine, (2R,6R)-hydroxynorketamine [HNK], dextromethorphan, Nuedexta [a combination of dextromethorphan and quinidine], deudextromethorphan [AVP-786], axsome [AXS-05], dextromethadone [REL-1017], nitrous oxide, AZD6765, CLE100, AGN-241751); (2) glycine site modulators (d-cycloserine [DCS], NRX-101, rapastinel [GLYX-13], apimostinel [NRX-1074], sarcosine, 4-chlorokynurenine [4-Cl-KYN/AV-101]); (3) subunit (NR2B)-specific N-methyl-d-aspartate (NMDA) receptor antagonists (eliprodil [EVT-101], traxoprodil [CP-101,606], rislenemdaz [MK-0657/CERC-301]); (4) metabotropic glutamate receptor (mGluR) modulators (basimglurant, AZD2066, RG1578, TS-161); and (5) mammalian target of rapamycin complex 1 (mTORC1) activators (NV-5138). Many of these agents are still in the preliminary stages of development. Furthermore, to date, most have demonstrated relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics. Of these novel agents, the most promising, and the ones for which the most evidence exists, appear to be those targeting ionotropic glutamate receptors.
Citations
More filters
Journal ArticleDOI
TL;DR: The most promising drugs with innovative mechanisms of action are undergoing phase 2 or 3 testing for schizophrenia, bipolar disorder, major depressive disorder, anxiety and trauma-related disorders, substance use disorders, and dementia as mentioned in this paper .

23 citations

Journal ArticleDOI
TL;DR: This paper reviewed the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic (R,S)-ketamine (hereafter referred to as ketamine) as well as its S-enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD).
Abstract: This manuscript reviews the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic (R,S)-ketamine (hereafter referred to as ketamine) as well as its S-enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD). Initial studies found that a single subanesthetic-dose IV ketamine infusion rapidly (within one day) improved depressive symptoms in individuals with MDD and bipolar depression, with antidepressant effects lasting three to seven days. In 2019, esketamine received FDA approval as an adjunctive treatment for treatment-resistant depression (TRD) in adults. Esketamine was approved under a risk evaluation and mitigation strategy (REMS) that requires administration under medical supervision. Both ketamine and esketamine are currently viable treatment options for TRD that offer the possibility of rapid symptom improvement. The manuscript also reviews ketamine's use in other psychiatric diagnoses-including suicidality, obsessive-compulsive disorder, post-traumatic stress disorder, substance abuse, and social anxiety disorder-and its potential adverse effects. Despite limited data, side effects for antidepressant-dose ketamine-including dissociative symptoms, hypertension, and confusion/agitation-appear to be tolerable and limited to around the time of treatment. Relatively little is known about ketamine's longer-term effects, including increased risks of abuse and/or dependence. Attempts to prolong ketamine's effects with combined therapy or a repeat-dose strategy are also reviewed, as are current guidelines for its clinical use. In addition to presenting a novel and valuable treatment option, studying ketamine also has the potential to transform our understanding of the mechanisms underlying mood disorders and the development of novel therapeutics.

22 citations

Journal ArticleDOI
TL;DR: The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists and hallucinogenic tryptamine derivates as discussed by the authors .
Abstract: Major depressive disorder is a leading cause of disability worldwide. Because conventional therapies are ineffective in many patients, novel strategies are needed to overcome treatment-resistant depression (TRD). Limiting factors of successful drug development in the last decades were the lack of (1) knowledge of pathophysiology, (2) translational animal models and (3) objective diagnostic biomarkers. Here, we review novel drug targets and drug candidates currently investigated in Phase I-III clinical trials. The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists, and hallucinogenic tryptamine derivates. The only registered drug for TRD is the NMDA receptor antagonist, S-ketamine, but add-on therapies with second-generation antipsychotics, certain nutritive, anti-inflammatory and neuroprotective agents seem to be effective. Currently, there is an intense research focus on large-scale, high-throughput omics and neuroimaging studies. These results might provide new insights into molecular mechanisms and potential novel therapeutic strategies.

18 citations

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that activity of adult-born immature granule neurons (ABINs) in the mouse hippocampal dentate gyrus is both necessary and sufficient for the rapid antidepressant effects of ketamine.
Abstract: Abstract Ketamine treatment decreases depressive symptoms within hours, but the mechanisms mediating these rapid antidepressant effects are unclear. Here, we demonstrate that activity of adult-born immature granule neurons (ABINs) in the mouse hippocampal dentate gyrus is both necessary and sufficient for the rapid antidepressant effects of ketamine. Ketamine treatment activates ABINs in parallel with its behavioral effects in both stressed and unstressed mice. Chemogenetic inhibition of ABIN activity blocks the antidepressant effects of ketamine, indicating that this activity is necessary for the behavioral effects. Conversely, chemogenetic activation of ABINs without any change in neuron numbers mimics both the cellular and the behavioral effects of ketamine, indicating that increased activity of ABINs is sufficient for rapid antidepressant effects. These findings thus identify a specific cell population that mediates the antidepressant actions of ketamine, indicating that ABINs can potentially be targeted to limit ketamine’s side effects while preserving its therapeutic efficacy.

18 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the pathophysiology of major depressive disorder found in the glutamate system, exploring the role of glutamate receptors and their downstream effects, and further insight into the mechanism of depression and exploring potential targets for novel agent development.

15 citations

References
More filters
Journal ArticleDOI
TL;DR: A first placebo-controlled, double-blinded trial to assess the treatment effects of a single dose of an N-methyl-D-aspartate (NMDA) receptor antagonist in patients with depression suggests a potential role for NMDA receptor-modulating drugs in the treatment of depression.

3,039 citations

Journal ArticleDOI
TL;DR: Robust and rapid antidepressant effects resulted from a single intravenous dose of an N-methyl-D-aspartate antagonist; onset occurred within 2 hours postinfusion and continued to remain significant for 1 week.
Abstract: Context Existing therapies for major depression have a lag of onset of action of several weeks, resulting in considerable morbidity. Exploring pharmacological strategies that have rapid onset of antidepressant effects within a few days and that are sustained would have an enormous impact on patient care. Converging lines of evidence suggest the role of the glutamatergic system in the pathophysiology and treatment of mood disorders. Objective To determine whether a rapid antidepressant effect can be achieved with an antagonist at theN-methyl-D-aspartate receptor in subjects with major depression. Design A randomized, placebo-controlled, double-blind crossover study from November 2004 to September 2005. Setting Mood Disorders Research Unit at the National Institute of Mental Health. Patients Eighteen subjects withDSM-IVmajor depression (treatment resistant). Interventions After a 2-week drug-free period, subjects were given an intravenous infusion of either ketamine hydrochloride (0.5 mg/kg) or placebo on 2 test days, a week apart. Subjects were rated at baseline and at 40, 80, 110, and 230 minutes and 1, 2, 3, and 7 days postinfusion. Main Outcome Measure Changes in scores on the primary efficacy measure, the 21-item Hamilton Depression Rating Scale. Results Subjects receiving ketamine showed significant improvement in depression compared with subjects receiving placebo within 110 minutes after injection, which remained significant throughout the following week. The effect size for the drug difference was very large (d = 1.46 [95% confidence interval, 0.91-2.01]) after 24 hours and moderate to large (d = 0.68 [95% confidence interval, 0.13-1.23]) after 1 week. Of the 17 subjects treated with ketamine, 71% met response and 29% met remission criteria the day following ketamine infusion. Thirty-five percent of subjects maintained response for at least 1 week. Conclusions Robust and rapid antidepressant effects resulted from a single intravenous dose of anN-methyl-D-aspartate antagonist; onset occurred within 2 hours postinfusion and continued to remain significant for 1 week. Trial Registration clinicaltrials.gov Identifier:NCT00088699.

2,965 citations

Journal ArticleDOI
20 Aug 2010-Science
TL;DR: The results demonstrate that the effects of ketamine are opposite to the synaptic deficits that result from exposure to stress and could contribute to the fast antidepressant actions of ketamines.
Abstract: The rapid antidepressant response after ketamine administration in treatment-resistant depressed patients suggests a possible new approach for treating mood disorders compared to the weeks or months required for standard medications. However, the mechanisms underlying this action of ketamine [a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist] have not been identified. We observed that ketamine rapidly activated the mammalian target of rapamycin (mTOR) pathway, leading to increased synaptic signaling proteins and increased number and function of new spine synapses in the prefrontal cortex of rats. Moreover, blockade of mTOR signaling completely blocked ketamine induction of synaptogenesis and behavioral responses in models of depression. Our results demonstrate that these effects of ketamine are opposite to the synaptic deficits that result from exposure to stress and could contribute to the fast antidepressant actions of ketamine.

2,345 citations

Journal ArticleDOI
23 May 1986-Science
TL;DR: Two metabolites of the steroid hormones progesterone and deoxycorticosterone are potent barbiturate-like ligands of the gamma-aminobutyric acid (GABA) receptor-chloride ion channel complex and potentiated the inhibitory actions of GABA in cultured rat hippocampal and spinal cord neurons, which may explain the ability of certain steroid hormones to rapidly alter neuronal excitability.
Abstract: Two metabolites of the steroid hormones progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-dihydroprogesterone and 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone, are potent barbiturate-like ligands of the gamma-aminobutyric acid (GABA) receptor-chloride ion channel complex. At concentrations between 10(-7) and 10(-5)M both steroids inhibited binding of the convulsant t-butylbicyclophosphorothionate to the GABA-receptor complex and increased the binding of the benzodiazepine flunitrazepam; they also stimulated chloride uptake (as measured by uptake of 36Cl-) into isolated brain vesicles, and potentiated the inhibitory actions of GABA in cultured rat hippocampal and spinal cord neurons. These data may explain the ability of certain steroid hormones to rapidly alter neuronal excitability and may provide a mechanism for the anesthetic and hypnotic actions of naturally occurring and synthetic anesthetic steroids.

2,175 citations

Journal ArticleDOI
TL;DR: The findings suggest that ketamine may disrupt dopaminergic neurotransmission in the PFC as well as cognitive functions associated with this region, in part, by increasing the release of glutamate, thereby stimulating postsynaptic non-NMDA glutamate receptors.
Abstract: Subanesthetic doses of ketamine, a noncompetitive NMDA receptor antagonist, impair prefrontal cortex (PFC) function in the rat and produce symptoms in humans similar to those observed in schizophrenia and dissociative states, including impaired performance of frontal lobe-sensitive tests. Several lines of evidence suggest that ketamine may impair PFC function in part by interacting with dopamine neurotransmission in this region. This study sought to determine the mechanism by which ketamine may disrupt dopaminergic neurotransmission in, and cognitive functions associated with, the PFC. A thorough dose-response study using microdialysis in conscious rats indicated that low doses of ketamine (10, 20, and 30 mg/kg) increase glutamate outflow in the PFC, suggesting that at these doses ketamine may increase glutamatergic neurotransmission in the PFC at non-NMDA glutamate receptors. An anesthetic dose of ketamine (200 mg/kg) decreased, and an intermediate dose of 50 mg/kg did not affect, glutamate levels. Ketamine, at 30 mg/kg, also increased the release of dopamine in the PFC. This increase was blocked by intra-PFC application of the AMPA/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione CNQX. Furthermore, ketamine-induced activation of dopamine release and impairment of spatial delayed alternation in the rodent, a PFC-sensitive cognitive task, was ameliorated by systemic pretreatment with AMPA/kainate receptor antagonist LY293558. These findings suggest that ketamine may disrupt dopaminergic neurotransmission in the PFC as well as cognitive functions associated with this region, in part, by increasing the release of glutamate, thereby stimulating postsynaptic non-NMDA glutamate receptors.

1,697 citations