scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Novel Vaccine Technologies: Essential Components of an Adequate Response to Emerging Viral Diseases

10 Apr 2018-JAMA (American Medical Association)-Vol. 319, Iss: 14, pp 1431-1432
TL;DR: Synthetic vaccinology and platform manufacturing are important innovations that can speed the initial vaccine immunogen design and vaccine development process, and shorten the time needed for manufacturing and initial regulatory approval to begin phase 1 testing.
Abstract: The availability of vaccines in response to newly emerging infections is impeded by the length of time it takes to design, manufacture, and evaluate vaccines for clinical use. Historically, the process of vaccine development through to licensure requires decades; however, clinicians and public health officials are often faced with outbreaks of viral diseases, sometimes of a pandemic nature that would require vaccines for adequate control. New viral diseases emerge from zoonotic and vectorborne sources, such as Middle East Respiratory Syndrome coronavirus and Chikungunya, and while these diseases are often detected in resource-rich countries, they usually begin in lowand mid-income countries.1 Therefore, part of the timeline for a vaccine involves surveillance and detection of new pathogens in remote areas and transfer of specimens to laboratories capable of vaccine development. Development of vaccines for viral infections has historically been an empirical and iterative process based on the use of attenuated or inactivated whole virus. This requires unique methods of cultivation for each virus, development of animal models for vaccine testing, and a prolonged process of fine-tuning product formulation and immunogenicity, and for live-attenuated vaccines, pathogenicity. Thus, preclinical vaccine development can take years, followed by several more years of early-phase clinical testing and defining of dose and schedule. Moreover, efficacy testing and registration with regulatory agencies often takes another 5 to 10 years. In total, 15 to 20 years would be a typical timeframe from virus discovery to vaccineavailability iftheprocessproceedssmoothlyandthere are no major biological or logistical challenges. Fortunately, during the last decade, there have been substantial technological advances for conceiving, developing, manufacturing, and delivering vaccines. Rapid genetic sequencing allows both early identification of new pathogens and the identity of the genes encoding structural proteins that can form the basis for vaccine immunogen development. Also, rapid isolation of human monoclonal antibodies has proven to be extremely helpful in defining epitopes that are the targets of protective immunity. Additional tools of modern vaccinology include (1) delineation of atomic-level structures of viral proteins that facilitates structure-enabled immunogen design and protein engineering; (2) cell sorting and sequencing technologies that allow single-cell analysis of immune responses; and (3) genetic knock-in technologies that allow construction of animal models with human antibody genes for vaccine testing. These tools have already provided the potential not only for solving longstanding problems in vaccinology, such as the development of a new candidate vaccine for respiratory syncytial virus, but they have facilitated rapid development of new candidate vaccines for emerging pathogens such as the Zika virus and pandemic strains of influenza virus. Synthetic vaccinology and platform manufacturing are important innovations that can speed the initial vaccine immunogen design and vaccine development process, and shorten the time needed for manufacturing and initial regulatory approval to begin phase 1 testing. Synthetic vaccinology is the process of using viral gene sequence information to accelerate vaccine development.2 For example, if a new influenza virus emerges anywhere in the world and is identified through genomic sequencing, the digitally transferred information can be used to synthesize nucleic acids encoding the viral surface proteins (hemagglutinin and neuraminidase). The process of gene synthesis is now extremely rapid and relatively inexpensive. Thus, within a few weeks, DNA plasmids encoding viral proteins can be available for preclinical testing. These genetic vectors (DNA and mRNA) can be used directly for immunization whereby intramuscular immunization leads to muscle cells producing the viral proteins. Alternatively, the genetic vectors can be used to express recombinant protein antigens, in vitro, that can be used for immunization. Similarly, if an outbreak of a new flavivirus becomes an epidemic or even a pandemic threat, as with Zika in 2015, the gene sequences that encode the viral surface proteins premembrane and envelope can be rapidly identified and form the basis for vaccine immunogen design strategies, based on prior knowledge of flavivirus structure and mechanisms of neutralization.3 Once a structurally authentic immunogen is available, the protein or genetic vectors encoding the protein can be used to immunize animals. In addition, the vaccine proteins can be used as probes to identify monoclonal antibodies secreted by B cells of convalescent humans. Such antibodies are valuable not only for refining vaccine immunogen designs, but also for development of diagnostic assays and potentially for use in passive transfer as therapeutic agents. Thus, development of reagents, diagnostics, candidate vaccines, and immune assessment assays can be done without having the actual virus in hand. This has particular value for viruses with extreme pathogenicity because it avoids the need for high-level containment in laboratory and manufacturing facilities. Platform manufacturing technologies allow more rapidproductionandclinicalimplementationoncethevaccine immunogen design is established. The term platform is used in many ways; however, in vaccine production, VIEWPOINT

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
25 Feb 2020-JAMA
TL;DR: Yet another pathogenic HCoV, 2019 novel coronavirus (2019-nCoV), was recognized in Wuhan, China, and has caused serious illness and death, and the ultimate scope and effect of this outbreak is unclear at present.
Abstract: Human coronaviruses (HCoVs) have long been considered inconsequential pathogens, causing the “common cold” in otherwise healthy people. However, in the 21st century, 2 highly pathogenic HCoVs—severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)—emerged from animal reservoirs to cause global epidemics with alarming morbidity and mortality. In December 2019, yet another pathogenic HCoV, 2019 novel coronavirus (2019-nCoV), was recognized in Wuhan, China, and has caused serious illness and death. The ultimate scope and effect of this outbreak is unclear at present as the situation is rapidly evolving. Coronaviruses are large, enveloped, positivestrand RNA viruses that can be divided into 4 genera: alpha, beta, delta, and gamma, of which alpha and beta CoVs are known to infect humans.1 Four HCoVs (HCoV 229E, NL63, OC43, and HKU1) are endemic globally and account for 10% to 30% of upper respiratory tract infections in adults. Coronaviruses are ecologically diverse with the greatest variety seen in bats, suggesting that they are the reservoirs for many of these viruses.2 Peridomestic mammals may serve as intermediate hosts, facilitating recombination and mutation events with expansion of genetic diversity.

1,561 citations

Journal ArticleDOI
05 Aug 2020-Nature
TL;DR: In this article, an mRNA vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is proposed, which is used to control the CoVID-19 global pandemic.
Abstract: A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.

981 citations

Journal ArticleDOI
28 Jun 2021-Nature
TL;DR: In this article, the authors examined antigen-specific B-cell responses in peripheral blood and draining lymph nodes in 14 individuals who had received 2-doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1.
Abstract: SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191–5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity. Analysis of antigen-specific B cells in lymph nodes of individuals vaccinated with BNT162b2 reveals lasting germinal centre responses, explaining the robust humoral immunity induced by SARS-CoV-2 mRNA-based vaccines.

470 citations

Journal ArticleDOI
TL;DR: This pathogen has the potential to become a pandemic and it is therefore vital to follow the personal care recommendations issued by the World Health Organisation.
Abstract: A new coronavirus outbreak emerged on the 31st of December 2019 in Wuhan, China, causing commotion among the medical community and the rest of the world. This new species of coronavirus has been termed 2019-nCoV and has caused a considerable number of cases of infection and deaths in China and, to a growing degree, beyond China, becoming a worldwide public health emergency. 2019-nCoV has high homology to other pathogenic coronaviruses, such as those originating from bat-related zoonosis (SARS-CoV), which caused approximately 646 deaths in China at the start of the decade. The mortality rate for 2019-nCoV is not as high (approximately 2-3%), but its rapid propagation has resulted in the activation of protocols to stop its spread. This pathogen has the potential to become a pandemic. It is therefore vital to follow the personal care recommendations issued by the World Health Organization.

192 citations

Journal ArticleDOI
TL;DR: The purpose of this article is to review the most up-to-date published data regarding both the leading pharmacological therapies undergoing clinical trials and vaccine candidates in development to stem the threat of COVID-19.

176 citations


Cites background from "Novel Vaccine Technologies: Essenti..."

  • ...subunit vaccines [62] and, thus, there have been several mRNA-based SARS CoV-2 vaccine candidates developed and currently undergoing...

    [...]

References
More filters
Journal ArticleDOI
21 Feb 2008-Nature
TL;DR: It is concluded that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.
Abstract: Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic, environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 'events' (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socio-economic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease 'hotspots'). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.

5,992 citations


"Novel Vaccine Technologies: Essenti..." refers methods in this paper

  • ...Additional tools of modern vaccinology include (1) delineation of atomic-level structures of viral proteins that facilitates structure-enabled immunogen design and protein engineering; (2) cell sorting and sequencing technologies that allow single-cell analysis of immune responses; and (3) genetic knock-in technologies that allow construction of animal models with human antibody genes for vaccine testing....

    [...]

Journal ArticleDOI
14 Oct 2016-Science
TL;DR: It is found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZikV challenge correlated with serum neutralizing activity.
Abstract: Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection.

348 citations


"Novel Vaccine Technologies: Essenti..." refers methods in this paper

  • ...Additional tools of modern vaccinology include (1) delineation of atomic-level structures of viral proteins that facilitates structure-enabled immunogen design and protein engineering; (2) cell sorting and sequencing technologies that allow single-cell analysis of immune responses; and (3) genetic knock-in technologies that allow construction of animal models with human antibody genes for vaccine testing....

    [...]

Journal ArticleDOI
TL;DR: How technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development is discussed.
Abstract: Emerging infectious diseases will continue to threaten public health and are sustained by global commerce, travel and disruption of ecological systems. Most pandemic threats are caused by viruses from either zoonotic sources or vector-borne sources. Developing better ways to anticipate and manage the ongoing microbial challenge will be critical for achieving the United Nations Sustainable Development Goals and, conversely, each such goal will affect the ability to control infectious diseases. Here we discuss how technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development.

102 citations


"Novel Vaccine Technologies: Essenti..." refers methods in this paper

  • ...Additional tools of modern vaccinology include (1) delineation of atomic-level structures of viral proteins that facilitates structure-enabled immunogen design and protein engineering; (2) cell sorting and sequencing technologies that allow single-cell analysis of immune responses; and (3) genetic knock-in technologies that allow construction of animal models with human antibody genes for vaccine testing....

    [...]

Journal ArticleDOI
TL;DR: Nucleic acid-based vaccines are being developed as a means to combine the positive attributes of both live-attenuated and subunit vaccines as mentioned in this paper, but none have yet been licensed for human use.

59 citations

Related Papers (5)