scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nuclear metabolism and the regulation of the epigenome.

12 Oct 2020-Vol. 2, Iss: 11, pp 1190-1203
TL;DR: In this Review, recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments are highlighted.
Abstract: Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
Citations
More filters
01 Nov 2017
TL;DR: A potential molecular link between the effects of methionine restriction and the growth controller mTOR complex 1 (mTORC1), a well-validated regulator of life span and health span in many organisms is described and a protein named SAMTOR is identified as a component of the nutrient-sensing pathway upstream of m TORC1.
Abstract: mTOR complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple environmental cues. Nutrients signal via the Rag guanosine triphosphatases (GTPases) to promote the localization of mTORC1 to the lysosomal surface, its site of activation. We identified SAMTOR, a previously uncharacterized protein, which inhibits mTORC1 signaling by interacting with GATOR1, the GTPase activating protein (GAP) for RagA/B. We found that the methyl donor S-adenosylmethionine (SAM) disrupts the SAMTOR-GATOR1 complex by binding directly to SAMTOR with a dissociation constant of approximately 7 μM. In cells, methionine starvation reduces SAM levels below this dissociation constant and promotes the association of SAMTOR with GATOR1, thereby inhibiting mTORC1 signaling in a SAMTOR-dependent fashion. Methionine-induced activation of mTORC1 requires the SAM binding capacity of SAMTOR. Thus, SAMTOR is a SAM sensor that links methionine and one-carbon metabolism to mTORC1 signaling.

168 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight how aberrantly regulated metabolic enzymes with non-canonical or non-metabolic functions play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling.

62 citations

Journal ArticleDOI
TL;DR: In this paper, a scalable method that measures multiplexed intranuclear protein levels and the transcriptome in parallel across thousands of nuclei, enabling joint analysis of transcription factor (TF) levels and gene expression in vivo, is described.
Abstract: Identifying gene-regulatory targets of nuclear proteins in tissues is a challenge. Here we describe intranuclear cellular indexing of transcriptomes and epitopes (inCITE-seq), a scalable method that measures multiplexed intranuclear protein levels and the transcriptome in parallel across thousands of nuclei, enabling joint analysis of transcription factor (TF) levels and gene expression in vivo. We apply inCITE-seq to characterize cell state-related changes upon pharmacological induction of neuronal activity in the mouse brain. Modeling gene expression as a linear combination of quantitative protein levels revealed genome-wide associations of each TF and recovered known gene targets. TF-associated genes were coexpressed as distinct modules that each reflected positive or negative TF levels, showing that our approach can disentangle relative putative contributions of TFs to gene expression and add interpretability to inferred gene networks. inCITE-seq can illuminate how combinations of nuclear proteins shape gene expression in native tissue contexts, with direct applications to solid or frozen tissues and clinical specimens.

42 citations

Journal ArticleDOI
TL;DR: The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts as discussed by the authors and is associated with a plethora of histone modifications (e.g., H3 acetylated at K27).
Abstract: Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid-liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.

41 citations

References
More filters
Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations

Journal ArticleDOI
15 May 2009-Science
TL;DR: It is shown here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro.
Abstract: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference–mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.

5,155 citations

Journal ArticleDOI
TL;DR: It is proposed that DNA methylation age measures the cumulative effect of an epigenetic maintenance system, and can be used to address a host of questions in developmental biology, cancer and aging research.
Abstract: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.

4,233 citations

Journal ArticleDOI
TL;DR: The question of whether tumor cells in living animals can be killed off through lack of energy, and the related question of how the tumors are supplied with oxygen and glucose in the body are discussed.
Abstract: In this contribution we discuss the question of whether tumor cells in living animals can be killed off through lack of energy, and the related question of how the tumors are supplied with oxygen and glucose in the body. We assume it is understood that tumor cells obtain the energy required for their existence in two ways: by respiration and by fermentation. In respiration they burn organic materials to carbon dioxide and water; in fermentation they split glucose to lactic acid. All tumors so far tested behave fundamentally alike. There is no essential difference between the cancer cells of transplanted rat tumors and spontaneous tumors, sarcoma and carcinoma cells, and the tar carcinoma, and Rous sarcoma produced by filtrate. The fermentation of tumors was first found with cut pieces of tumor in vitro. I C. and G. Cori 2 demonstrated it in living animals as well. They determined the glucose and lactic acid in the axillary veins of hens having in one wing a Rous sarcoma, and found in 100 cc. of blood 23 mg. less glucose and 16 rag. more lactic acid on the tumor side than on the normal side. A corresponding experiment with a human fore-arm tumor showed in 100 cc. of blood 12 rag. less glucose and 9 rag. more lactic acid on the tumor side. In experiments on the nourishment of tumors through the blood stream, we, like Cori, determined the glucose and lactic acid in tumor veins. Our procedure differed from Cori's in that we compared tumor veins and arteries, not tumor veins and corresponding normal veins. Our differences were greater than Cori's because we went closer to

3,306 citations

Trending Questions (1)
What metabolic reactions take place in the nucleus?

Metabolic reactions in the nucleus involve core metabolites like ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP, and α-ketoglutarate, crucial for chromatin modifiers in establishing epigenetic signatures.