scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Null energy condition and superluminal propagation

07 Mar 2006-Journal of High Energy Physics (IOP Publishing)-Vol. 2006, Iss: 3, pp 025-025
TL;DR: In this paper, the null energy condition is violated in a large class of situations, including isotropic solids and fluids relevant for cosmology, and the existence of superluminal modes is shown to imply the presence of instabilities.
Abstract: We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other hand we present several counter-examples of consistent effective field theories possessing a stable background where the null energy condition is violated. Two necessary features of these counter-examples are the lack of isotropy of the background and the presence of superluminal modes. We argue that many of the properties of massive gravity can be understood by associating it to a solid at the edge of violating the null energy condition. We briefly analyze the difficulties of mimicking u H > 0 in scalar tensor theories of gravity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the structure of correlation functions in the most general single scalar field action with higher derivatives, formalizing the conditions under which the fluctuations can be expanded around a Gaussian distribution.
Abstract: Many statistics available to constrain non-Gaussianity from inflation are simplest to use under the assumption that the curvature correlation functions are hierarchical That is, if the n-point function is proportional to the (n-1) power of the two-point function amplitude and the fluctuations are small, the probability distribution can be approximated by expanding around a Gaussian in moments However, single-field inflation with higher derivative interactions has a second small number, the sound speed, that appears in the problem when non-Gaussianity is significant and changes the scaling of correlation functions Here we examine the structure of correlation functions in the most general single scalar field action with higher derivatives, formalizing the conditions under which the fluctuations can be expanded around a Gaussian distribution We comment about the special case of the Dirac-Born-Infeld action

32 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the relation between the field theory description of perfect fluids to thermodynamics by drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, and find that a complete thermodynamic picture requires the four Stuckelberg fields.
Abstract: The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields These scalars describe the embedding in spacetime of the medium and play the role of St\"uckelberg fields for spontaneously broken spatial and time translations Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar We explore the relation between the field theory description of perfect fluids to thermodynamics By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four St\"uckelberg fields We show that thermodynamic stability plus the null-energy condition imply dynamical stability We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken

32 citations


Cites background or methods or result from "Null energy condition and superlumi..."

  • ...With this interpretation, that was already proposed in [4], the current J μ defined in (4....

    [...]

  • ...in [2,3] and later in [4]; see also [5]....

    [...]

  • ...Actually, other conserved currents are present (depending on the operator content) but are not relevant for our purposes in this work; for a discussion, see for instance [4,5,7,15,18]....

    [...]

  • ...This is interesting because such symmetry is precisely the minimal requirement to have an EFT organized as a derivative expansion; see [4,5,8,9]....

    [...]

  • ...We extend the thermodynamic correspondences proposed in [4,5], obtaining a thermodynamic dictionary that we have condensed in Table II....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effects of shift symmetry in single-clock cosmologies were investigated under the Effective Field Theory of Inflation (EFTI). But the effects on the laws of nature were not investigated.
Abstract: A shift symmetry is a ubiquitous ingredient in inflationary models, both in effective constructions and in UV-finite embeddings such as string theory. It has also been proposed to play a key role in certain Dark Energy and Dark Matter models. Despite the crucial role it plays in cosmology, the observable, model independent consequences of a shift symmetry are yet unknown. Here, assuming an exact shift symmetry, we derive these consequences for single-clock cosmologies within the framework of the Effective Field Theory of Inflation. We find an infinite set of relations among the otherwise arbitrary effective coefficients, which relate non-Gaussianity to their time dependence. For example, to leading order in derivatives, these relations reduce the infinitely many free functions in the theory to just a single one. Our Effective Theory of shift-symmetric cosmologies describes, among other systems, perfect and imperfect superfluids coupled to gravity and driven superfluids in the decoupling limit. Our results are the first step to determine observationally whether a shift symmetry is at play in the laws of nature and whether it is broken by quantum gravity effects.

32 citations

Journal ArticleDOI
TL;DR: In this article, a Schwinger-Keldysh effective field theory for relativistic hydrodynamics for charged matter in a thermal background using a superspace formalism is presented.
Abstract: We construct a Schwinger-Keldysh effective field theory for relativistic hydrodynamics for charged matter in a thermal background using a superspace formalism. Superspace allows us to efficiently impose the symmetries of the problem and to obtain a simple expression for the effective action. We show that the theory we obtain is compatible with the Kubo-Martin-Schwinger condition, which in turn implies that Green's functions obey the fluctuation-dissipation theorem. Our approach complements and extends existing formulations found in the literature.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the self-consistency of the effective field theory imposes a number of bounds on physical quantities, mainly on the maximum strain and maximum stress that can be supported by the medium.
Abstract: Phonons in solid materials can be understood as the Goldstone bosons of the spontaneously broken spacetime symmetries. As such, their low energy dynamics are greatly constrained and can be captured by standard effective field theory methods. In particular, knowledge of the nonlinear stress-strain curves completely fixes the full effective Lagrangian at leading order in derivatives. We attempt to illustrate the potential of effective methods focusing on the so-called hyperelastic materials, which allow large elastic deformations. We find that the self-consistency of the effective field theory imposes a number of bounds on physical quantities, mainly on the maximum strain and maximum stress that can be supported by the medium. In particular, for stress-strain relations that at large deformations are characterized by a power-law behavior σ(ϵ)∼ϵν, the maximum strain exhibits a sharp correlation with the exponent ν.

31 citations

References
More filters
Book
01 Jan 1973
TL;DR: In this paper, the authors discuss the General Theory of Relativity in the large and discuss the significance of space-time curvature and the global properties of a number of exact solutions of Einstein's field equations.
Abstract: Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

8,932 citations

Book
01 Jan 1984

8,137 citations

Journal ArticleDOI
TL;DR: For a flat universe with a cosmological constant, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13 as mentioned in this paper, and w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy.
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.

4,236 citations

Journal ArticleDOI
TL;DR: In this article, the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration was provided by the discovery of 16 Type Ia supernovae with the Hubble Space Telescope (HST).
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest-redshift SNe Ia known, all at z>1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these and 170 previous SNe Ia are provided. A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z=0.46 +/- 0.13. The data are consistent with the cosmic concordance model of Omega_M ~ 0.3, Omega_Lambda~0.7 (chi^2_dof=1.06), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant. When combined with external flat-Universe constraints we find w=-1.02 + 0.13 - 0.19 (and $<-0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = w\rho c^2. Joint constraints on both the recent equation of state of dark energy, $w_0$, and its time evolution, dw/dz, are a factor of ~8 more precise than its first estimate and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w_0 = -1.0, dw/dz = 0), and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the Universe.

3,528 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a mechanism by which four-dimensional Newtonian gravity emerges on a 3-brane in 5D Minkowski space with an infinite size extra dimension.

3,247 citations