scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Null energy condition and superluminal propagation

07 Mar 2006-Journal of High Energy Physics (IOP Publishing)-Vol. 2006, Iss: 3, pp 025-025
TL;DR: In this paper, the null energy condition is violated in a large class of situations, including isotropic solids and fluids relevant for cosmology, and the existence of superluminal modes is shown to imply the presence of instabilities.
Abstract: We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other hand we present several counter-examples of consistent effective field theories possessing a stable background where the null energy condition is violated. Two necessary features of these counter-examples are the lack of isotropy of the background and the presence of superluminal modes. We argue that many of the properties of massive gravity can be understood by associating it to a solid at the edge of violating the null energy condition. We briefly analyze the difficulties of mimicking u H > 0 in scalar tensor theories of gravity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of a recently proposed extension of symmetric teleparallel gravity dubbed as f(Q,T) gravity in getting viable cosmological models, where Q and T respectively denote the nonmetricity and the trace of energy momentum tensor.
Abstract: In the context of the late time cosmic acceleration phenomenon, many geometrically modified theories of gravity have been proposed in recent times. In this paper, we have investigated the role of a recently proposed extension of symmetric teleparallel gravity dubbed as f(Q,T) gravity in getting viable cosmological models, where Q and T respectively denote the non-metricity and the trace of energy momentum tensor. We stress upon the mathematical simplification of the formalism in the f(Q,T) gravity and derived the dynamical parameters in more general form in terms of the Hubble parameter. We considered two different cosmological models mimicking non-singular matter bounce scenario. Since energy conditions play a vital role in providing bouncing scenario, we have analyzed different possible energy conditions to show that strong energy condition and null energy condition be violated in this theory. The models considered in the work are validated through certain cosmographic tests and stability analysis.

20 citations

Journal ArticleDOI
TL;DR: In this article, the analytic continuation from the Euclidean domain to real space of the irreducible quantum effective action is discussed in the context of generalized local equilibrium states.
Abstract: The analytic continuation from the Euclidean domain to real space of the one-particle irreducible quantum effective action is discussed in the context of generalized local equilibrium states. Discontinuous terms associated with dissipative behavior are parametrized in terms of a conveniently defined sign operator. A generalized variational principle is then formulated, which allows to obtain causal and real dissipative equations of motion from the analytically continued quantum effective action. Differential equations derived from the implications of general covariance determine the space-time evolution of the temperature and fluid velocity fields and allow for a discussion of entropy production including a local form of the second law of thermodynamics.

19 citations

Journal ArticleDOI
TL;DR: In this paper, a low energy effective theory of gravity with broken spatial diffeomorphism invariance is proposed. But the model is restricted to the unitary gauge, and the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars.
Abstract: We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. We discuss several examples relevant to theories of massive gravity.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors revisited the dynamical dark energy model building based on single scalar field involving higher derivative terms and showed that the model with explicit form of degenerate Lagrangian can cross -1 without any instability.
Abstract: In this paper we revisit the dynamical dark energy model building based on single scalar field involving higher derivative terms. By imposing a degenerate condition on the higher derivatives in curved spacetime, one can select the models which are free from the ghost mode and the equation of state is able to cross the cosmological constant boundary smoothly, dynamically violate the null energy condition. Generally the Lagrangian of this type of dark energy models depends on the second derivatives linearly. It behaves like an imperfect fluid, thus its cosmological perturbation theory needs to be generalized. We also study such a model with explicit form of degenerate Lagrangian and show that its equation of state may cross -1 without any instability.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider parity-odd transport in 2+1 dimensional charged fluids and derive a two-parameter family of non-dissipative fluids from an effective action.
Abstract: We consider parity-odd transport in 2+1 dimensional charged fluids restricting attention to the class of non-dissipative fluids. We show that there is a two parameter family of such non-dissipative fluids which can be derived from an effective action, in contradistinction with a four parameter family that can be derived from an entropy current analysis. The effective action approach allows us to extract the adiabatic transport data, in particular the Hall viscosity and Hall conductivity amongst others, in terms of the thermodynamic functions that enter as 'coupling constants'. Curiously, we find that Hall viscosity is forced to vanish, whilst the Hall conductivity is generically a non-vanishing function of thermodynamic data determined in terms of the hydrodynamic couplings.

18 citations


Cites background from "Null energy condition and superlumi..."

  • ...See [9] for earlier work, [10, 11] for attempts to include dissipation and [12, 13] for supersymmetric extensions....

    [...]

References
More filters
Book
01 Jan 1973
TL;DR: In this paper, the authors discuss the General Theory of Relativity in the large and discuss the significance of space-time curvature and the global properties of a number of exact solutions of Einstein's field equations.
Abstract: Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

8,932 citations

Book
01 Jan 1984

8,137 citations

Journal ArticleDOI
TL;DR: For a flat universe with a cosmological constant, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13 as mentioned in this paper, and w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy.
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.

4,236 citations

Journal ArticleDOI
TL;DR: In this article, the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration was provided by the discovery of 16 Type Ia supernovae with the Hubble Space Telescope (HST).
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest-redshift SNe Ia known, all at z>1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these and 170 previous SNe Ia are provided. A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z=0.46 +/- 0.13. The data are consistent with the cosmic concordance model of Omega_M ~ 0.3, Omega_Lambda~0.7 (chi^2_dof=1.06), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant. When combined with external flat-Universe constraints we find w=-1.02 + 0.13 - 0.19 (and $<-0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = w\rho c^2. Joint constraints on both the recent equation of state of dark energy, $w_0$, and its time evolution, dw/dz, are a factor of ~8 more precise than its first estimate and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w_0 = -1.0, dw/dz = 0), and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the Universe.

3,528 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a mechanism by which four-dimensional Newtonian gravity emerges on a 3-brane in 5D Minkowski space with an infinite size extra dimension.

3,247 citations