scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Null energy condition and superluminal propagation

07 Mar 2006-Journal of High Energy Physics (IOP Publishing)-Vol. 2006, Iss: 3, pp 025-025
TL;DR: In this paper, the null energy condition is violated in a large class of situations, including isotropic solids and fluids relevant for cosmology, and the existence of superluminal modes is shown to imply the presence of instabilities.
Abstract: We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other hand we present several counter-examples of consistent effective field theories possessing a stable background where the null energy condition is violated. Two necessary features of these counter-examples are the lack of isotropy of the background and the presence of superluminal modes. We argue that many of the properties of massive gravity can be understood by associating it to a solid at the edge of violating the null energy condition. We briefly analyze the difficulties of mimicking u H > 0 in scalar tensor theories of gravity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, higher derivative terms in the supersymmetric effective actions for three-dimensional scalar field theories using superspace formalism were analyzed and it was shown that auxiliary fields do not propagate and their effective actions can be expressed in terms of the physical fields.
Abstract: In this work, we systematically analyze higher derivative terms in the supersymmetric effective actions for three dimensional scalar field theories using $$ \mathcal{N}=1 $$ superspace formalism. In these effective actions, we show that auxiliary fields do not propagate and their effective actions can be expressed in terms of the physical fields. So, the theory does not change its field content upon addition of higher derivative terms. We use derivative expansion to generate four, five and six dimensional terms for an interacting scalar field theory with $$ \mathcal{N}=1 $$ supersymmetry. We show that along with pure fermionic and bosonic terms, there are various five and six dimensional topological terms that mix bosonic and fermionic fields. Finally, we use these results to obtain higher derivative topological terms in the effective action for two M2-branes.

4 citations


Cites background from "Null energy condition and superlumi..."

  • ...It is possible to overcome this problem by adding higher derivative terms [7, 8]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors studied the gravitational backreaction associated with large field variations for a light scalar coupled to gravity, and showed a generic obstruction in sourcing a super-Planckian scalar profile without making the whole experiment collapse into a black hole.
Abstract: For a light scalar coupled to gravity, I study the gravitational backreaction associated with large field variations. I show a generic obstruction in sourcing a super-Planckian scalar profile without making the whole experiment collapse into a black hole. In empty space the scalar variation obeys an absolute bound, of order of the Planck scale. A Newtonian analysis suggests that inside its sources the scalar can undergo arbitrarily large variations without causing large gravitational backreactions. However the maximum attainable \Delta \phi increases only logarithmically with the size of the source. The bound straightforwardly generalizes to any number of dimensions, and to moduli space-like cases, where it applies to the invariant length in field space as measured by the kinetic metric.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the relativistic effective field theory (EFT) describing a non-dissipative gravitating continuum is investigated and a thread-based spacetime decomposition with respect to the four-velocity of the continuum is presented.
Abstract: We investigate the relativistic effective field theory (EFT) describing a non-dissipative gravitating continuum. In addition to ordinary continua, namely solids and fluids, we find an extraordinary more symmetric continuum, aether. In particular, the symmetry of the aether concludes that a homogeneous and isotropic state behaves like a cosmological constant. We formulate the EFT in the unitary/comoving gauge in which the dynamical degrees of freedom of the continuum (phonons) are eaten by the spacetime metric. This gauge choice, which is interpreted as the Lagrangian description in hydrodynamics, offers a neat geometrical understanding of continua. We examine a thread-based spacetime decomposition with respect to the four-velocity of the continuum which is different from the foliation-based Arnowitt-Deser-Misner one. Our thread-based decomposition respects the symmetries of the continua and, therefore, makes it possible to systematically find invariant building blocks of the EFT for each continuum even at higher orders in the derivative expansion. We also discuss the linear dynamics of the system and show that both gravitons and phonons acquire “masses” in a gravitating background.

4 citations

Journal ArticleDOI
TL;DR: In this article, an effective theory of fluids at next-to-leading order in derivatives, including an operator that has not been considered until now, is presented, and the power-counting scheme and its connection with the propagation of phonon and metric fluctuations are emphasized.
Abstract: We present the effective theory of fluids at next-to-leading order in derivatives, including an operator that has not been considered until now. The power-counting scheme and its connection with the propagation of phonon and metric fluctuations are emphasized. In a perturbed FLRW geometry the theory presents a set of features that make it very rich for modelling the acceleration of the Universe. These include anisotropic stress, a non-adiabatic speed of sound and modifications to the standard equations of vector and tensor modes. These effects are determined by an energy scale which controls the size of the high derivative terms and ensures that no instabilities appear.

4 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that scale invariant entropy modes can be generated in a spectator field that starts in adiabatic vacuum, and is kinetically coupled to the primary field.
Abstract: It has been recently shown that a cosmological bounce model based on Cuscuton gravity does not have any ghosts or curvature instabilities. We explore whether Cuscuton bounce can provide an alternative to inflation for generating near scale-invariant scalar perturbations. While a single field Cuscuton bounce generically produces a strongly blue power spectrum (for a variety of initial/boundary conditions), we demonstrate that scale invariant entropy modes can be generated in a spectator field that starts in adiabatic vacuum, and is kinetically coupled to the primary field. Furthermore, our solution has no singularity, nor requires an ad hoc matching condition. We also study the generation of tensor modes (or gravitational waves) in Cuscuton bounce and show that while they are stable, similar to other bounce models, the produced spectrum is strongly blue and unobservable.

4 citations

References
More filters
Book
01 Jan 1973
TL;DR: In this paper, the authors discuss the General Theory of Relativity in the large and discuss the significance of space-time curvature and the global properties of a number of exact solutions of Einstein's field equations.
Abstract: Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

8,932 citations

Book
01 Jan 1984

8,137 citations

Journal ArticleDOI
TL;DR: For a flat universe with a cosmological constant, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13 as mentioned in this paper, and w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy.
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.

4,236 citations

Journal ArticleDOI
TL;DR: In this article, the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration was provided by the discovery of 16 Type Ia supernovae with the Hubble Space Telescope (HST).
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest-redshift SNe Ia known, all at z>1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these and 170 previous SNe Ia are provided. A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z=0.46 +/- 0.13. The data are consistent with the cosmic concordance model of Omega_M ~ 0.3, Omega_Lambda~0.7 (chi^2_dof=1.06), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant. When combined with external flat-Universe constraints we find w=-1.02 + 0.13 - 0.19 (and $<-0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = w\rho c^2. Joint constraints on both the recent equation of state of dark energy, $w_0$, and its time evolution, dw/dz, are a factor of ~8 more precise than its first estimate and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w_0 = -1.0, dw/dz = 0), and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the Universe.

3,528 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a mechanism by which four-dimensional Newtonian gravity emerges on a 3-brane in 5D Minkowski space with an infinite size extra dimension.

3,247 citations