scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers

TL;DR: In this paper, a non-toxic, lead-free perovskite solar cell (PSC) with Cs2AgBiBr6, P3HT, ZnO nanorod, and C were utilized as the absorber layer, hole transport layer, electron transport layer and back contact, respectively.
Abstract: We carried out simulative investigations on a non-toxic, lead-free perovskite solar cell (PSC), where Cs2AgBiBr6, P3HT, ZnO nanorod, and C were utilized as the absorber layer, hole transport layer, electron transport layer, and back contact, respectively. At 600 nm optimum absorber thickness, the device achieved a maximum power conversion efficiency of 4.48%. The PSC operated optimally when the electron affinities were set at 3.3 eV and 4.6 eV for P3HT and ZnO nanorod, respectively. Moreover, the hole mobility and acceptor concentration of P3HT should be weighed during the choosing of appropriate doping additives and doping levels. Besides, the optimum back contact work function and absorber defect density were found to be 5.2 eV and 1015 cm−3, respectively. We also observed the effect of radiative recombination rates and different charge transport layers on the device's performance. Overall, this study's simulation results will provide insightful guidance towards fabricating an environmentally benign PSC.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors performed a density functional theory (DFT) study using the Cambridge Serial Total Energy Package (CASTEP) code for the cubic CsPbI3 absorber to compare and evaluate its structural, electronic, and optical properties.
Abstract: CsPbI3 has recently received tremendous attention as a possible absorber of perovskite solar cells (PSCs). However, CsPbI3-based PSCs have yet to achieve the high performance of the hybrid PSCs. In this work, we performed a density functional theory (DFT) study using the Cambridge Serial Total Energy Package (CASTEP) code for the cubic CsPbI3 absorber to compare and evaluate its structural, electronic, and optical properties. The calculated electronic band gap (Eg) using the GGA-PBE approach of CASTEP was 1.483 eV for this CsPbI3 absorber. Moreover, the computed density of states (DOS) exhibited the dominant contribution from the Pb-5d orbital, and most charges also accumulated for the Pb atom as seen from the electronic charge density map. Fermi surface calculation showed multiband character, and optical properties were computed to investigate the optical response of CsPbI3. Furthermore, we used IGZO, SnO2, WS2, CeO2, PCBM, TiO2, ZnO, and C60 as the electron transport layers (ETLs) and Cu2O, CuSCN, CuSbS2, Spiro-MeOTAD, V2O5, CBTS, CFTS, P3HT, PEDOT:PSS, NiO, CuO, and CuI as the hole transport layers (HTLs) to identify the best HTL/CsPbI3/ETL combinations using the SCAPS-1D solar cell simulation software. Among 96 device structures, the best-optimized device structure, ITO/TiO2/CsPbI3/CBTS/Au, was identified, which exhibited an efficiency of 17.9%. The effect of the absorber and ETL thickness, series resistance, shunt resistance, and operating temperature was also evaluated for the six best devices along with their corresponding generation rate, recombination rate, capacitance–voltage, current density–voltage, and quantum efficiency characteristics. The obtained results from SCAPS-1D were also compared with wxAMPS simulation results.

30 citations

Journal ArticleDOI
TL;DR: In this article , a combined DFT, SCAPS-1D, and wxAMPS frameworks are used to investigate the optimized designs of Cs2BiAgI6 double perovskite-based solar cells.
Abstract: In this study, combined DFT, SCAPS-1D, and wxAMPS frameworks are used to investigate the optimized designs of Cs2BiAgI6 double perovskite-based solar cells. The first-principle calculation is employed to investigate the structural stability, optical responses, and electronic contribution of the constituent elements in Cs2BiAgI6 absorber material, where SCAPS-1D and wxAMPS simulators are used to scrutinize different configurations of Cs2BiAgI6 solar cells. Here, PCBM, ZnO, TiO2, C60, IGZO, SnO2, WS2, and CeO2 are used as ETL, and Cu2O, CuSCN, CuSbS2, NiO, P3HT, PEDOT: PSS, Spiro-MeOTAD, CuI, CuO, V2O5, CBTS, CFTS are used as HTL, and Au is used as a back contact. About ninety-six combinations of Cs2BiAgI6-based solar cell structures are investigated, in which eight sets of solar cell structures are identified as the most efficient structures. Besides, holistic investigation on the effect of different factors such as the thickness of different layers, series and shunt resistances, temperature, capacitance, Mott-Schottky and generation-recombination rates, and J-V (current-voltage density) and QE (quantum efficiency) characteristics is performed. The results show CBTS as the best HTL for Cs2BiAgI6 with all eight ETLs used in this work, resulting in a power conversion efficiency (PCE) of 19.99%, 21.55%, 21.59%, 17.47%, 20.42%, 21.52%, 14.44%, 21.43% with PCBM, TiO2, ZnO, C60, IGZO, SnO2, CeO2, WS2, respectively. The proposed strategy may pave the way for further design optimization of lead-free double perovskite solar cells.

22 citations

Journal ArticleDOI
TL;DR: In this article , a summary of Cs 2 AgBiBr 6 multidimensional functionality such as photovoltaics, photodetectors, X-ray detectors, ferroelectricity, magnetization, and gas sensing is presented.

21 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the potential of CsPbI3 as an absorber material for use in perovskite solar cells (PSCs), and used TiO2 as the electron electron.
Abstract: In this study, we investigated the potential of CsPbI3 as an absorber material for use in perovskite solar cells (PSCs). To optimize the device, we used TiO2 as the electron...

16 citations

Journal ArticleDOI
TL;DR: In this article , inorganic-lead free and non-toxic double perovskite La2NiMnO6 material is employed as an active layer along with fullerene as ETL and NiO as HTL to form heterostructure perovsite solar cell.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: In the data for the 63 elements, trends that occur simultaneously in both the columns and the rows of the periodic table are shown to be useful in predicting correct values and also for identifying questionable data.
Abstract: A new compilation, based on a literature search for the period 1969–1976, is made of experimental data on the work function. For these 44 elements, preferred values are selected on the basis of valid experimental conditions. Older values, which are widely accepted, are given for 19 other elements on which there is no recent literature, and are so identified. In the data for the 63 elements, trends that occur simultaneously in both the columns and the rows of the periodic table are shown to be useful in predicting correct values and also for identifying questionable data. Several illustrative examples are given, including verifications of predictions published in 1950.

3,569 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the zinc precursor type, the aging of the starting solution, the substrate temperature and a vacuum-annealing treatment on the electrical, morphological, structural and optical properties was studied, in order to obtain conductive and transparent zinc oxide thin films.

2,780 citations

Journal ArticleDOI
TL;DR: Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants.
Abstract: Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants. The ratio of the two is found to defy the Langevin limit of kinetic charge capture by over four orders of magnitude. This mechanism causes long (micrometer) charge-pair diffusion lengths crucial for flat-heterojunction photovoltaics.

2,712 citations

Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.
Abstract: Perovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells1: poly(triarylamine) (PTAA)2–5 and 2,2ʹ,7,7ʹ-tetrakis(N,N-di-p-methoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-OMeTAD)6,7. However, these materials have several drawbacks in terms of commercialization, including high cost8, the need for hygroscopic dopants that trigger degradation of the perovskite layer9 and limitations in their deposition processes10. Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties11–13, low cost8,14 and ease of fabrication15–18, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16 per cent19. Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface. Our device has a certified power conversion efficiency of 22.7 per cent with hysteresis of ±0.51 per cent; exhibits good stability at 85 per cent relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95 per cent of the initial efficiency. We extend our platform to large-area modules (24.97 square centimetres)—which are fabricated using a scalable bar-coating method for the deposition of P3HT—and achieve a power conversion efficiency of 16.0 per cent. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research. A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.

1,681 citations