scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Numerical simulation of thrust generating flow past a pitching airfoil

01 Jan 2006-Computers & Fluids (Elsevier Science Ltd)-Vol. 35, Iss: 1, pp 16-42
TL;DR: In this paper, a systematic understanding of the influence of various parameters on thrust generation from an aharmonically pitching airfoil is presented, which is very similar to the inviscid theory prediction, however, in a clear deviation from inviscidian theorytrends, pitching at high amplitudes about high mean angle of attack, only drag is observed for high values of reduced frequency considered.
About: This article is published in Computers & Fluids.The article was published on 2006-01-01. It has received 40 citations till now. The article focuses on the topics: Aerodynamic center & Pitching moment.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used particle image velocimetry (PIV) to investigate the three-dimensional wakes of rigid pitching panels with a trapezoidal geometry, chosen to model idealized fish caudal fins.
Abstract: Particle image velocimetry (PIV) is used to investigate the three-dimensional wakes of rigid pitching panels with a trapezoidal geometry, chosen to model idealized fish caudal fins. Experiments are performed for Strouhal numbers from 0.17 to 0.56 for two different trailing edge pitching amplitudes. A Lagrangian coherent structure (LCS) analysis is employed to investigate the formation and evolution of the panel wake. A classic reverse von Karman vortex street pattern is observed along the mid-span of the near wake, but the vortices realign and exhibit strong interactions near the spanwise edges of the wake. At higher Strouhal numbers, the complexity of the wake increases downstream of the trailing edge as the spanwise vortices spread transversely and lose coherence as the wake splits. This wake transition is shown to correspond to a qualitative change in the LCS pattern surrounding each vortex core, and can be identified as a quantitative event that is not dependent on arbitrary threshold levels. The location of this transition is observed to depend on both the pitching amplitude and free stream velocity, but is not constant for a fixed Strouhal number. On the panel surface, the trapezoidal planform geometry is observed to create additional vortices along the swept edges that retain coherence for low Strouhal numbers or high sweep angles. These additional swept-edge structures are conjectured to add to the complex three-dimensional flow near the tips of the panel.

153 citations

Journal ArticleDOI
TL;DR: Four flippers produce superior surge behavior but do so at high cost; two flippers serve well for lost-cost cruising, and two two-flippered gaits compare favorably with that of aquatic tetrapods.
Abstract: To understand how to modulate the behavior of underwater swimmers propelled by multiple appendages, we conducted surge maneuver experiments on our biologically-inspired robot, Madeleine. Robot Madeleine is a self-contained, self-propelled underwater vehicle with onboard processor, sensors and power supply. Madeleine's four flippers, oscillating in pitch, can be independently controlled, allowing us to test the impact of flipper phase on performance. We tested eight gaits, four four-flippered and four two-flippered. Gaits were selected to vary the phase, at either 0 or pi rad, between flippers on one side, producing a fore-aft interaction, or flippers on opposite sides, producing a port-starboard interaction. During rapid starting, top-speed cruising, and powered stopping, the power draw, linear acceleration and position of Madeleine were measured. Four-flippered gaits produced higher peak start accelerations than two, but did so with added power draw. During cruising, peak speeds did not vary by flipper number, but power consumption was double in four flippers compared to that of two flippers. Cost of transport (J N(-1) m(-1)) was lower for two-flippered gaits and compares favorably with that of aquatic tetrapods. Two four-flippered gaits produce the highest surge scope, a measure of the difference in peak forward and reverse acceleration. Thus four flippers produce superior surge behavior but do so at high cost; two flippers serve well for lost-cost cruising.

108 citations


Cites background from "Numerical simulation of thrust gene..."

  • ...…bodies (Koob and Long 2000, Summers and Long 2006), (3) flippers that work using an oscillating vortex-shedding mechanism (Koochesfahani 1989, Sarkar and Venkatraman 2006, Terada and Yamamoto 2004) that likely shares underlying hydromechanical principles with the flapping forelimbs of sea…...

    [...]

Journal ArticleDOI
TL;DR: In this article, an oscillating freestream over a stationary S809 airfoil is simulated numerically using ANSYS Fluent 12.1 and compared with aerodynamic coefficients from existing experimental and semi-empirical data.

108 citations


Cites background from "Numerical simulation of thrust gene..."

  • ...Dependency of thrust generation on different parameters such as reduced frequency was investigated in detail by Sarkar and Venkatraman [11]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effects of large amplitude and nonsinusoidal motion on pitching airfoil aerodynamics for thrust generation were numerically studied with a 2-D NACA0012 and NACA asymmetric airfoils were applied for camber effect study.

75 citations

Proceedings ArticleDOI
09 Jan 2006
TL;DR: In this paper, the authors discuss recent progress in understanding the low Reynolds number unsteady fluid dynamics associated with flapping wings, including leading-edge vortices, pitching-up rotation and wake-capturing mechanisms.
Abstract: For flight vehicles operated at the low Reynolds number regime, such as birds, bats, insects, as well as small man-made vehicles, flapping and fixed wings are employed in various ways to generate aerodynamic forces For flapping wings, the unsteady fluid physics, interacting with wing kinematics and shapes determine the lift generation For fixed wings, laminar-turbulent transition, three dimensional flows around low aspect ratio vehicles, and coupling between flexible wing structures and surrounding fluid flows are of major interest In the present paper we discuss recent progress in understanding the low Reynolds number unsteady fluid dynamics associated with flapping wings, including leading-edge vortices, pitching-up rotation and wake-capturing mechanisms For fixed wings, recent efforts in fluid-structure interaction and laminar-turbulent transition are highlighted

75 citations

References
More filters
Book
01 Jan 1967
TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Abstract: Preface Conventions and notation 1. The physical properties of fluids 2. Kinematics of the flow field 3. Equations governing the motion of a fluid 4. Flow of a uniform incompressible viscous fluid 5. Flow at large Reynolds number: effects of viscosity 6. Irrotational flow theory and its applications 7. Flow of effectively inviscid liquid with vorticity Appendices.

11,187 citations

Journal ArticleDOI
TL;DR: In this paper, the Navier-Stokes equation is derived for an inviscid fluid, and a finite difference method is proposed to solve the Euler's equations for a fluid flow in 3D space.
Abstract: This brief paper derives Euler’s equations for an inviscid fluid, summarizes the Cauchy momentum equation, derives the Navier-Stokes equation from that, and then talks about finite difference method approaches to solutions. Typical texts for this material are apparently Acheson, Elementary Fluid Dynamics and Landau and Lifschitz, Fluid Mechanics. 1. Basic Definitions We describe a fluid flow in three-dimensional space R as a vector field representing the velocity at all locations in the fluid. Concretely, then, a fluid flow is a function ~v : R× R → R that assigns to each point (t, ~x) in spacetime a velocity ~v(t, ~x) in space. In the special situation where ~v does not depend on t we say that the flow is steady. A trajectory or particle path is a curve ~x : R→ R such that for all t ∈ R, d dt ~x(t) = ~v(t, ~x(t)). Fix a t0 ∈ R; a streamline at time t0 is a curve ~x : R→ R such that for all t ∈ R, d dt ~x(t) = ~v(t0, ~x(t)). In the special case of steady flow the streamlines are constant across times t0 and any trajectory is a streamline. In non-steady flows, particle paths need not be streamlines. Consider the 2-dimensional example ~v = [− sin t cos t]>. At t0 = 0 the velocities all point up and the streamlines are vertical straight lines. At t0 = π/2 the velocities all point left and the streamlines are horizontal straight lines. Any trajectory is of the form ~x = [cos t + C1 sin t + C2] >; this traces out a radius-1 circle centered at [C1 C2] >. Indeed, all radius-1 circles in the plane arise as trajectories. These circles cross each other at many (in fact, all) points. If you find it counterintuitive that distinct trajectories can pass through a single point, remember that they do so at different times. 2. Acceleration Let f : R × R → R be some scalar field (such as temperature). Then ∂f/∂t is the rate of change of f at some fixed point in space. If we precompose f with a 1 Fluid Dynamics Math 211, Fall 2014, Carleton College trajectory ~x, then the chain rule gives us the rate of change of f with respect to time along that curve: D Dt f := d dt f(t, x(t), y(t), z(t)) = ∂f ∂t + ∂f ∂x dx dt + ∂f ∂y dy dt + ∂f ∂z dz dt = ( ∂ ∂t + dx dt ∂ ∂x + dy dt ∂ ∂y + dz dt ∂ ∂z ) f = ( ∂ ∂t + ~v · ∇ ) f. Intuitively, if ~x describes the trajectory of a small sensor for the quantity f (such as a thermometer), then Df/Dt gives the rate of change of the output of the sensor with respect to time. The ∂f/∂t term arises because f varies with time. The ~v ·∇f term arises because f is being measured at varying points in space. If we apply this idea to each component function of ~v, then we obtain an acceleration (or force per unit mass) vector field ~a(t, x) := D~v Dt = ∂~v ∂t + (~v · ∇)~v. That is, for any spacetime point (t, ~x), the vector ~a(t, ~x) is the acceleration of the particle whose trajectory happens to pass through ~x at time t. Let’s check that it agrees with our usual notion of acceleration. Suppose that a curve ~x describes the trajectory of a particle. The acceleration should be d dt d dt~x. By the definition of trajectory, d dt d dt ~x = d dt ~v(t, ~x(t)). The right-hand side is precisely D~v/Dt. Returning to our 2-dimensional example ~v = [− sin t cos t]>, we have ~a = [− cos t − sin t]>. Notice that ~v · ~a = 0. This is the well-known fact that in constant-speed circular motion the centripetal acceleration is perpendicular to the velocity. (In fact, the acceleration of any constant-speed trajectory is perpendicular to its velocity.) 3. Ideal Fluids An ideal fluid is one of constant density ρ, such that for any surface within the fluid the only stresses on the surface are normal. That is, there exists a scalar field p : R × R → R, called the pressure, such that for any surface element ∆S with outward-pointing unit normal vector ~n, the force exerted by the fluid inside ∆S on the fluid outside ∆S is p~n ∆S. The constant density condition implies that the fluid is incompressible, meaning ∇ · ~v = 0, as follows. For any region of space R, the rate of flow of mass out of the region is ∫∫ ∂R ρ~v · ~n dS = ∫∫∫

9,804 citations

02 May 1934
TL;DR: In this paper, the Kutta condition was used to analyze the aerodynamic forces on an oscillating airfoil or an air-foil-aileron combination of three independent degrees of freedom.
Abstract: The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.

2,153 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical method for solving the time-dependent Navier-Stokes equations in two space dimensions at high Reynolds number is presented, where the crux of the method lies in the numerical simulation of the process of vorticity generation and dispersal, using computer-generated pseudo-random numbers.
Abstract: A numerical method for solving the time-dependent Navier–Stokes equations in two space dimensions at high Reynolds number is presented. The crux of the method lies in the numerical simulation of the process of vorticity generation and dispersal, using computer-generated pseudo-random numbers. An application to flow past a circular cylinder is presented.

1,427 citations

Journal ArticleDOI
TL;DR: In this paper, a preliminary quantitative analysis of how a series of modifications of that basic undulatory mode, found in the vertebrates (and especially in the fishes), tends to improve speed and hydromechanical efficiency.
Abstract: This paper attempts to emulate the great study by Goldstein (1929) ‘On the vortex wake of a screw propeller’, by looking for a dynamical theory of how another type of propulsion system has evolved towards ever higher performance. An ‘undulatory’ mode of animal propulsion in water is rather common among invertebrates, and this paper offers a preliminary quantitative analysis of how a series of modifications of that basic undulatory mode, found in the vertebrates (and especially in the fishes), tends to improve speed and hydromechanical efficiency.Posterior lateral compression is the most important of these. It is studied first in ‘pure anguilliform’ (eel-like) motion of fishes whose posterior cross-sections are laterally compressed, although maintaining their depth (while the body tapers) by means of long continuous dorsal and ventral fins all the way to a vertical ‘trailing edge’. Lateral motion of such a cross-section produces a large and immediate exchange of momentum with a considerable ‘virtual mass’ of water near it.In § 2, ‘elongated-body theory’ (an extended version of inviscid slender-body theory) is developed in detail for pure anguilliform motion and subjected to several careful checks and critical studies. Provided that longitudinal variation of cross-sectional properties is slow on a scale of the cross-sectional depth s (say, if the wavelength of significant harmonic components of that variation exceeds 5s), the basic approach is applicable and lateral water momentum per unit length is closely proportional to the square of the local cross-section depth.The vertical trailing edge can be thought of as acting with a lateral force on the wake through lateral water momentum shed as the fish moves on. The fish's mean rate of working is the mean product of this lateral force with the lateral component of trailing-edge movement, and is enhanced by the virtual-mass effect, which makes for good correlation between lateral movement and local water momentum. The mean rate of shedding of energy of lateral water motions into the vortex wake represents the wasted element in this mean rate of working, and it is from the difference of these two rates that thrust and efficiency can best be calculated.Section 3, still from the standpoint of inviscid theory, studies the effect of any development of discrete dorsal and ventral fins, through calculations on vortex sheets shed by fins. A multiplicity of discrete dorsal (or ventral) fins might be thought to destroy the slow variation of cross-sectional properties on which elongated-body theory depends, but the vortex sheets filling the gaps between them are shown to maintain continuity rather effectively, avoiding thrust reduction and permitting a slight decrease in drag.Further advantage may accrue from a modification of such a system in which (while essentially anguilliform movement is retained) the anterior dorsal and ventral fins become the only prominent ones. Vortex sheets in the gaps between them and the caudal fin may largely be reabsorbed into the caudal-fin boundary layer, without any significant increase in wasted wake energy. The mean rate of working can be improved, however, because the trailing edges of the dorsal and ventral fins do work that is not cancelled at the caudal fin's leading edge, as phase shifts destroy the correlation of that edge's lateral movement with the vortex-sheet momentum reabsorbed there.Tentative improvements to elongated-body theory through taking into account lateral forces of viscous origin are made in §4. These add to both the momentumandenergyof the water's lateral motions, but mayreduce the efficiencyof anguilliform motion because the extra momentum at the trailing edge, resulting from forces exerted by anterior sections, is badly correlated with that edge's lateral movements. Adoption of the ‘carangiform’ mode, in which the amplitude of the basic undulation grows steeply from almost zero over the first half or even two-thirds of a fish's length to a large value at the caudal fin, avoids this difficulty.Any movement which a fish attempts to make, however, is liable to be accompanied by ‘recoil’, that is, by extra movements of pure translation and rotation required for overall conservation of momentum and angular momentum. These recoil movements, a potentially serious source of thrust and efficiency loss in carangiform motion, are calculated in § 4, which shows how they are minimized with the right distribution of total inertia (the sum of fish mass and the water's virtual mass). It seems to be no coincidence that carangiform motion goes always with a long anterior region of high depth (possessing a substantial moment of total inertia) and a region of greatly reduced depth just before the caudal fin.The theory suggests (§5) that reduction of caudal-fin area in relation to depth by development of a caudal fin into a herring-like ‘pair of highly sweptback wings’ should reduce drag without significant loss of thrust. The same effect can be expected (although elongated-body theory ceases to be applicable) from widening of the wing pair (sweepback reduction). That line of development of the carangiform mode in many of the Percomorphi leads towards the lunate tail, a culminating point in the enhancement of speed and propulsive efficiency which has been reached also along some quite different lines of evolution.A beginning in the analysis of its advantages is made here using a ‘twodimensional’ linearized theory. Movements of any horizontal section of caudal fin, with yaw angle fluctuating in phase with its velocity of lateral translation, are studied for different positions of the yawing axis. The wasted energy in the wake has a sharp minimum when that axis is at the ‘three-quarter-chord point’, but rate of working increases somewhat for axis positions distal to that. Something like an optimum regarding efficiency, thrust and the proportion of thrust derived from suction at the section's rounded leading edge is found when the yawing axis is along the trailing edge.This leads on the present over-simplified theory to the suggestion that a hydromechanically advantageous configuration has the leading edge bowed forward but the trailing edge straight. Finally, there is a brief discussion of possible future work, taking three-dimensional and non-linear effects into account, that might throw light on the commonness of a trailing edge that is itself slightly bowed forward among the fastest marine animals.

732 citations