scispace - formally typeset
Journal ArticleDOI

Numerical simulations of particulate suspensions via a discretized boltzmann equation: part 1. theoretical foundation

Reads0
Chats0
TLDR
In this article, a general technique for simulating solid-fluid suspensions is described, which combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping flow regime and at higher Reynolds numbers.
Abstract
A new and very general technique for simulating solid–fluid suspensions is described; its most important feature is that the computational cost scales linearly with the number of particles. The method combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping-flow regime and at higher Reynolds numbers. Brownian motion of the solid particles arises spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from random forces or displacements applied directly to the particles. In this paper, the theoretical foundations of the technique are laid out, illustrated by simple analytical and numerical examples; in a companion paper (Part 2), extensive numerical tests of the method, for stationary flows, time-dependent flows, and finite-Reynolds-number flows, are reported.

read more

Citations
More filters
Journal ArticleDOI

Lattice boltzmann method for fluid flows

TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Journal ArticleDOI

Statistical Mechanics of Dissipative Particle Dynamics.

TL;DR: In this paper, the authors derived the stochastic differential equations corresponding to the updating algorithm of Dissipative Particle Dynamics (DPD), and the corresponding Fokker-Planck equation.
Journal ArticleDOI

Direct numerical simulation of free-surface and interfacial flow

TL;DR: In this paper, the authors consider the formation of droplet clouds or sprays that subsequently burn in combustion chambers, which is caused by interfacial instabilities, such as the Kelvin-Helmholtz instability.
Journal ArticleDOI

Multiple-relaxation-time lattice Boltzmann models in three dimensions.

TL;DR: Simulation of a diagonally lid–driven cavity flow in three dimensions clearly demonstrate the superior numerical stability of the multiple–relaxation–time lattice Boltzmann equation over the popular lattice Bhatnagar–Gross–Krook equation.
Journal ArticleDOI

Lattice-Boltzmann Method for Complex Flows

TL;DR: This work reviews many significant developments over the past decade of the lattice-Boltzmann method and discusses higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number.
References
More filters
Book

Computer Simulation of Liquids

TL;DR: In this paper, the gear predictor -corrector is used to calculate forces and torques in a non-equilibrium molecular dynamics simulation using Monte Carlo methods. But it is not suitable for the gear prediction problem.
Book

An Introduction to Fluid Dynamics

TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Book

Theory of simple liquids

TL;DR: In this article, the authors present a mathematical model for time-dependent correlation functions and response functions in liquid solvers, based on statistical mechanics and molecular distribution functions, and show that these functions are related to time correlation functions in Ionic and Ionic liquids.
Related Papers (5)