scispace - formally typeset

Proceedings ArticleDOI

Numerical Study on Swimming Performance Based on Flapping Orientations of Caudal Fins for Bio-robotic Systems

02 Jul 2019-

TL;DR: Dorso-ventral flapping with a positive metacentric height is shown to yield better self-stabilizing effects and lesser energy consumption compared to sideways flapping, and stability analysis for a generalised case is presented.
Abstract: Set in the context of the development of bioinspired robotics systems, this paper seeks to understand the influence of the choice of the flapping orientation of fins on the propulsive performance of small underwater vehicles. In particular, the thunniform mode of Body and/or Caudal Fin (BCF) propelled systems is studied. This research is motivated by the fact that not much literature is available on the influence of flapping orientation of marine organisms and a number of mechanisms are found in nature. Dorso-ventral flapping with a positive metacentric height is shown to yield better self-stabilizing effects and lesser energy consumption compared to sideways flapping. Moreover, with dorso-ventral flapping, the choice of metacentric height could lead to the possibility of adjusting the body's rotational oscillation amplitudes to positively affect the downstream fluid interactions for the caudal fin. This is not possible with sideways flapping where the designer would be forced to change the flapping kinematics or the body shape in the sagittal plane, to adjust the body oscillation amplitudes. While the main body of results are obtained using simulations for underwater vehicle dynamics with coefficients of the REMUS underwater vehicle, stability analysis for a generalised case is also presented.
Topics: Flapping (61%), Metacentric height (52%)
Citations
More filters

Timothy Prestero1Institutions (1)
01 Nov 2002-
Abstract: Describes the development and verification of a six degree of freedom, non-linear simulation model for the REMUS AUV, the first such model for this platform. In this model, the external forces and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. The paper briefly describes the derivation of these coefficients. The equations determining the coefficients, as well as those describing the vehicle rigid-body dynamics, are left in non-linear form to better simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is achieved through numeric integration of the equations of motion. The simulator output is then verified against vehicle dynamics data collected in experiments performed at sea. The simulator is shown to accurately model the motion of the vehicle. The paper concludes with recommendations for future model validation experiments.

113 citations


01 Jun 2014-
TL;DR: IMU can be helpful to diagnose of musculoskeletal disorders by range of motion and develop of customized rehabilitation program and help to diagnose early therapy for a musculo-knee disorders.
Abstract: This research aims to measure and analyze of range of motion in real time with inertial measurement unit(IMU). It can provided help to diagnose early therapy for a musculoskeletal disorders. Also, IMU can be evaluated state of joint motion in each direction, transverse, sagittal and coronal, respectively. As a result, it can be helpful to diagnose of musculoskeletal disorders by range of motion and develop of customized rehabilitation program.

13 citations


References
More filters

Proceedings ArticleDOI
11 Mar 2010-
TL;DR: This paper describes and implements a Kalman-based framework, called INS-EKF-ZUPT (IEZ), to estimate the position and attitude of a person while walking, which represents an extended PDR methodology (IEz+) valid for operation in indoor spaces with local magnetic disturbances.
Abstract: The estimation of the position of a person in a building is a must for creating Intelligent Spaces. State-of-the-art Local Positioning Systems (LPS) require a complex sensornetwork infrastructure to locate with enough accuracy and coverage. Alternatively, Inertial Measuring Units (IMU) can be used to estimate the movement of a person; a methodology that is called Pedestrian Dead-Reckoning (PDR). In this paper, we describe and implement a Kalman-based framework, called INS-EKF-ZUPT (IEZ), to estimate the position and attitude of a person while walking. IEZ makes use of an Extended Kalman filter (EKF), an INS mechanization algorithm, a Zero Velocity Update (ZUPT) methodology, as well as, a stance detection algorithm. As the IEZ methodology is not able to estimate the heading and its drift (non-observable variables), then several methods are used for heading drift reduction: ZARU, HDR and Compass. The main contribution of the paper is the integration of the heading drift reduction algorithms into a Kalman-based IEZ platform, which represents an extended PDR methodology (IEZ+) valid for operation in indoor spaces with local magnetic disturbances. The IEZ+ PDR methodology was tested in several simulated and real indoor scenarios with a low-performance IMU mounted on the foot. The positioning errors were about 1% of the total travelled distance, which are good figures if compared with other works using IMUs of higher performance.

413 citations


Journal ArticleDOI
George V. Lauder1Institutions (1)
Abstract: One of the most prominent characteristics of early vertebrates is the elongate caudal fin bearing fin rays. The caudal fin represents a fundamental design feature of vertebrates that predates the origin of jaws and is found in both agnathans and gnathostomes. The caudal fin also represents the most posterior region of the vertebrate axis and is the location where fluid, accelerated by movement of the body anteriorly, is shed into the surrounding medium. Despite the extensive fossil record of the caudal fin, the use of caudal characters for systematic studies, and the importance of tail function for understanding locomotor dynamics in fishes, few experimental studies have been undertaken of caudal fin function. In this paper I review two experimental approaches which promise to provide new insights into the function and evolution of the caudal fin: three-dimensional kinematic analysis, and quantitative flow measurements in the wake of freely-swimming fishes using digital particle image velocimetry (DPIV). These methods are then applied to the function of the caudal fin during steady swimming in fishes with heterocercal and homocercal morphologies: chondrichthyians (leopard sharks) and ray-fined fishes (sturgeon and bluegill sunfish). The caudal fin of leopard sharks functions in a manner consistent with the classical model of heterocercal tail function in which the caudal surface moves at an acute angle to the horizontal plane, and hence is expected to generate lift forces and torques which must be counteracted anteriorly by the body and pectoral fins. An alternative model in which the shark tail produces a reactive force that acts through the center of mass is not supported. The sturgeon heterocercal tail is extremely flexible and the upper tail lobe trails the lower during the fin beat cycle. The sturgeon tail does not function according to the classical model of the heterocercal tail, and is hypothesized to generate reactive forces oriented near the center of mass of the body which is tilted at an angle to the flow during steady locomotion. Functional analysis of the homocercal tail of bluegill shows that the dorsal and ventral lobes do not function symmetrically as expected. Rather, the dorsal lobe undergoes greater lateral excursions and moves at higher velocities than the ventral lobe. The surface of the dorsal lobe also achieves a significantly acute angle to the horizontal plane suggesting that the homocercal tail of bluegill generates lift during steady swimming. These movements are actively generated by the hypochordal longitudinalis muscle within the tail. This result, combined with DPIV flow visualization data, suggest a new hypothesis for the function of the homocercal tail: the homocercal tail generates tilted and linked vortex rings with a central jet inclined posteroventrally, producing an anterodorsal reactive force on the body which generates lift and torque in the manner expected of a heterocercal tail. These results show that the application of new techniques to the study of caudal fin function in fishes reveals a previously unknown diversity of homocercal and heterocercal tail function, and that morphological characterizations of caudal fins do not accurately reflect in vivo function.

206 citations


Timothy Prestero1Institutions (1)
01 Nov 2002-
Abstract: Describes the development and verification of a six degree of freedom, non-linear simulation model for the REMUS AUV, the first such model for this platform. In this model, the external forces and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. The paper briefly describes the derivation of these coefficients. The equations determining the coefficients, as well as those describing the vehicle rigid-body dynamics, are left in non-linear form to better simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is achieved through numeric integration of the equations of motion. The simulator output is then verified against vehicle dynamics data collected in experiments performed at sea. The simulator is shown to accurately model the motion of the vehicle. The paper concludes with recommendations for future model validation experiments.

113 citations


Journal ArticleDOI
George V. Lauder1, Eliot G. Drucker2Institutions (2)
01 Dec 2002-Physiology
TL;DR: New methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.
Abstract: Understanding how fishes generate external fluid force to swim steadily and maneuver has proven to be difficult because water does not provide a stable platform for force measurement. But new methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.

103 citations


"Numerical Study on Swimming Perform..." refers background in this paper

  • ...In general, sideways flapping axis cases would have a three-dimensional COM motion (surge, sway and heave) [12] whereas dorso-ventral flapping cases would have it only along two dimensions (surge and heave)....

    [...]


Journal ArticleDOI
Frank E. Fish1Institutions (1)
TL;DR: The flukes of cetaceans function in the hydrodynamic generation of forces for thrust, stability, and maneuverability, and the three-dimensional geometry of flukes is associated with the production of lift and drag.
Abstract: Animals display a variety of control surfaces that can be used for propulsion and maneuvering devises. For nonpiscine vertebrates, these control surfaces are primarily evolutionary modifications of the paired appendages (i.e., legs). The diversity of control surfaces can be classified with regard to the forces used for stability and maneuverability. For animals, the pertinent forces are pressure drag, acceleration reaction, and lift. These forces can be generated actively by motion of the control surfaces or passively from flows produced by movements of the body or external flow fields. Drag-based control surfaces are associated with paddling and rowing movements, where the limbs are oriented either in the vertical parasagittal plane or horizontal plane, respectively. The paddle is unstreamlined and has a triangular design with a broad distal end, thereby affecting a large mass of water. Appendages, which are used to generate lift-based forces, are relatively stiff hydrofoils. To maximize lift, the hydrofoil should have a crescent wing-like design with high aspect ratio. This shape provides the hydrofoil with a high lift-to-drag ratio and high propulsive efficiency. The tail flukes of cetaceans are streamlined control surfaces with a wing-like design. The flukes of cetaceans function in the hydrodynamic generation of forces for thrust, stability, and maneuverability. The three-dimensional geometry of flukes is associated with the production of lift and drag. Previous studies of fluke geometry have been limited in the number of species examined and the resolution of measurements.

91 citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20141
20021