scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nurturing the egg: the essential connection between cumulus cells and the oocyte

Claude Robert1
11 Oct 2021-Reproduction, Fertility and Development (CSIRO PUBLISHING)-
TL;DR: In this paper, the authors describe the central role played by the oocyte in reproductive success and how communication between cumulus cells and the Oocyte are essential to proper oogenesis and the quality of the resulting gamete.
Abstract: The determinants of oocyte quality remain uncertain. Under suitable conditions, which have yet to be defined, the gamete grows and acquires the competence to resume meiosis, be fertilised and undergo embryonic development at least beyond genome activation, after which the blastomere is autonomous enough to adapt to the specificity of its environment. This review describes the central role played by the oocyte in reproductive success and how communication between cumulus cells and the oocyte are essential to proper oogenesis and the quality of the resulting gamete. While most attempts to improve oocyte quality have been directed at gonadotrophin-based systemic endocrine signalling, it is proposed that parallel control of fertility may act locally within ovarian follicles through intimate cooperation between somatic cells and the oocyte via the network of transzonal projections. This intercellular communication may prove to be more sensitive to environmental conditions than systemic endocrine signalling, which is essential for many non-reproductive tissues.
References
More filters
Journal ArticleDOI
TL;DR: A picture has emerged depicting the classic endocrine control of ovarian function by LH and FSH, entangled in a maze of regulatory systems hinging on cell-cell interactions between follicular cells, via action of a variety of molecules.
Abstract: I. Introduction IN THE adult ovary, folliculogenesis starts when follicles leave the pool of resting follicles (RF) to enter the growth phase. From there, the early growing follicle undergoes a developmental process including a dramatic course of cellular proliferation and differentiation. In primates, only one follicle commonly reaches the preovulatory stage every cycle; most follicles fail to complete this maturation scheme, dying in the process termed atresia. In recent years, a picture has emerged depicting the classic endocrine control of ovarian function by LH and FSH, entangled in a maze of regulatory systems hinging on cell-cell interactions between follicular cells, via action of a variety of molecules (1–3). Different types of cell-cell interactions have been described. In paracrine regulations, a molecule synthesized by one cellular type is released into the interstitial milieu to act directly on another cellular type. In autocrine regulations, molecules synthesized by one cellular type are rel...

1,410 citations

Journal ArticleDOI
TL;DR: To generate animal models for human diseases involving the gonadotropin signal transduction pathway, mice deficient in the FSHβ subunit are produced and therefore in FSH using ES cell technology.
Abstract: Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that includes luteinzing hormone (LH), thyroid stimulating hormone, and chorionic gonadotropin. These heterodimeric hormones share a common alpha subunit and differ in their hormone-specific beta subunit. The biological activity is conferred only by the heterodimers. FSH and LH are synthesized in the same cells of the pituitary, the gonadotrophs. FSH receptors are localized to Sertoli cells of the testes and granulosa cells of the ovary. Minimal data has been accumulated so far involving human mutations in the FSH beta, LH beta, or the gonadotropin receptor genes. There are no known mouse strains with mutations in the FSH beta gene. To generate animal models for human diseases involving the gonadotropin signal transduction pathway, we produced mice deficient in the FSH beta subunit and therefore in FSH using ES cell technology. FSH-deficient females are infertile due to a block in folliculogenesis prior to antral follicle formation. Although FSH was predicted to be necessary for spermatogenesis and Sertoli cell growth in males, FSH-deficient males are fertile despite having small testes. Our findings have important implications for male contraceptive development in humans.

1,269 citations

Journal ArticleDOI
TL;DR: The results indicate that the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the conditions of embryo culture have a crucial role in determining Blastocyst quality.
Abstract: The aim of this study is to examine the effect of bovine oocyte maturation, fertilization or culture in vivo or in vitro on the proportion of oocytes reaching the blastocyst stage, and on blastocyst quality as measured by survival following vitrification. In Experiment 1, 4 groups of oocytes were used: (1) immature oocytes from 2-6 mm follicles; (2) immature oocytes from > 6 mm follicles; (3) immature oocytes recovered in vivo just before the LH surge; and (4) in vivo matured oocytes. Significantly more blastocysts developed from oocytes matured in vivo than those recovered just before the LH surge or than oocytes from 2-6 mm follicles. Results from > 6 mm follicles were intermediate. All blastocysts had low survival following vitrification. In Experiment 2, in vivo matured oocytes were either (1) fertilized in vitro or (2) fertilized in vivo by artificial insemination and the resulting presumptive zygotes recovered on day 1. Both groups were then cultured in vitro. In vivo fertilized oocytes had a significantly higher blastocyst yield than those fertilized in vitro. Blastocyst quality was similar between the groups. Both groups had low survival following vitrification. In Experiment 3a, presumptive zygotes produced by in vitro maturation (IVM)/fertilization (IVF) were cultured either in vitro in synthetic oviduct fluid, or in vivo in the ewe oviduct. In Experiment 3b, in vivo matured/in vivo fertilized zygotes were either surgically recovered on day 1 and cultured in vitro in synthetic oviduct fluid, or were nonsurgically recovered on day 7. There was no difference in blastocyst yields between groups of zygotes originating from the same source (in vivo or in vitro fertilization) irrespective of whether culture took place in vivo or in vitro. However, there was a dramatic effect on blastocyst quality with those blastocysts produced following in vivo culture surviving vitrification at significantly higher rates than their in vitro cultured counterparts. Collectively, these results indicate that the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the conditions of embryo culture have a crucial role in determining blastocyst quality.

823 citations

Journal ArticleDOI
TL;DR: Although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms and mice lacking FSH-R are generated by homologous recombination.
Abstract: Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.

812 citations

Journal ArticleDOI
TL;DR: This work concludes that the drift-barrier hypothesis is consistent with comparative measures of mutation rates, provides a simple explanation for the existence of error-prone polymerases and yields a formal counter-argument to the view that selection fine-tunes gene-specific mutation rates.
Abstract: Mutation is the source of genetic diversity on which natural selection acts, therefore understanding the rates of mutations is crucial for understanding evolutionary trajectories. In this Opinion article, the authors discuss how emerging experimental mutation-rate data from genome-wide sequencing studies, combined with population-genetic theory, can provide unifying explanations for the diversity in mutation rates between species and across genomic locations.

612 citations