scispace - formally typeset
Proceedings ArticleDOI

NV-Heaps: making persistent objects fast and safe with next-generation, non-volatile memories

Reads0
Chats0
TLDR
A lightweight, high-performance persistent object system called NV-heaps is implemented that provides transactional semantics while preventing these errors and providing a model for persistence that is easy to use and reason about.
Abstract
Persistent, user-defined objects present an attractive abstraction for working with non-volatile program state. However, the slow speed of persistent storage (i.e., disk) has restricted their design and limited their performance. Fast, byte-addressable, non-volatile technologies, such as phase change memory, will remove this constraint and allow programmers to build high-performance, persistent data structures in non-volatile storage that is almost as fast as DRAM. Creating these data structures requires a system that is lightweight enough to expose the performance of the underlying memories but also ensures safety in the presence of application and system failures by avoiding familiar bugs such as dangling pointers, multiple free()s, and locking errors. In addition, the system must prevent new types of hard-to-find pointer safety bugs that only arise with persistent objects. These bugs are especially dangerous since any corruption they cause will be permanent.We have implemented a lightweight, high-performance persistent object system called NV-heaps that provides transactional semantics while preventing these errors and providing a model for persistence that is easy to use and reason about. We implement search trees, hash tables, sparse graphs, and arrays using NV-heaps, BerkeleyDB, and Stasis. Our results show that NV-heap performance scales with thread count and that data structures implemented using NV-heaps out-perform BerkeleyDB and Stasis implementations by 32x and 244x, respectively, by avoiding the operating system and minimizing other software overheads. We also quantify the cost of enforcing the safety guarantees that NV-heaps provide and measure the costs of NV-heap primitive operations.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Mnemosyne: lightweight persistent memory

TL;DR: In tests emulating the performance characteristics of forthcoming SCMs, Mnemosyne can persist data as fast as 3 microseconds and can be up to 1400% faster than alternative persistence strategies, such as Berkeley DB or Boost serialization, that are designed for disks.
Journal ArticleDOI

Trends in big data analytics

TL;DR: An overview of the state-of-the-art and focus on emerging trends to highlight the hardware, software, and application landscape of big-data analytics are provided.
Proceedings ArticleDOI

System software for persistent memory

TL;DR: PMFS, a light-weight POSIX file system that exploits PM's byte-addressability to avoid overheads of block-oriented storage and enable direct PM access by applications (with memory-mapped I/O), is implemented.
Journal ArticleDOI

Overview of emerging nonvolatile memory technologies

TL;DR: This review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.
Proceedings ArticleDOI

Evaluating STT-RAM as an energy-efficient main memory alternative

TL;DR: It is shown that an optimized, equal capacity STT-RAM main memory can provide performance comparable to DRAM main memory, with an average 60% reduction in main memory energy.
References
More filters
Journal ArticleDOI

Pin: building customized program analysis tools with dynamic instrumentation

TL;DR: The goals are to provide easy-to-use, portable, transparent, and efficient instrumentation, and to illustrate Pin's versatility, two Pintools in daily use to analyze production software are described.
Proceedings ArticleDOI

Transactional memory: architectural support for lock-free data structures

TL;DR: Simulation results show that transactional memory matches or outperforms the best known locking techniques for simple benchmarks, even in the absence of priority inversion, convoying, and deadlock.
Proceedings ArticleDOI

Architecting phase change memory as a scalable dram alternative

TL;DR: This work proposes, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM.
Proceedings ArticleDOI

Scalable high performance main memory system using phase-change memory technology

TL;DR: This paper analyzes a PCM-based hybrid main memory system using an architecture level model of PCM and proposes simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.
Proceedings ArticleDOI

Software transactional memory

TL;DR: STM is used to provide a general highly concurrent method for translating sequential object implementations to non-blocking ones based on implementing a k-word compare&swap STM-transaction, a novel software method for supporting flexible transactional programming of synchronization operations.
Related Papers (5)