scispace - formally typeset
Journal ArticleDOI

ω- k Algorithm for Sparse-Transmit Sparse-Receive Diverging Beam Synthetic Aperture Transmit Scheme

03 Jun 2020-IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (Institute of Electrical and Electronics Engineers (IEEE))-Vol. 67, Iss: 10, pp 2046-2056
TL;DR: A fast and efficient frequency–wavenumber algorithm for the sparse DBSAT scheme and an additional novel step of recovering missing frame data due to sparse transmit is introduced, namely, projection onto elliptical sets (POES).

...read more

Abstract: In synthetic aperture (SA) imaging reported in the ultrasound imaging literature, typically, the delay and sum (DAS) beamformer is used; however, it is computationally expensive due to the pixel-by-pixel processing performed in the time domain. Recently, the adaptation of frequency-domain beamformers for medical ultrasound SA imaging, particularly to single-element/multielement synthetic transmit aperture (STA/MSTA) schemes, has been reported. In such reports, usually, less attention is paid to reducing system complexity. Recently, a sparse-transmit sparse-receive version of diverging beam-based synthetic aperture technique (DBSAT) was shown to achieve a reduction in system complexity by using fewer parallel receive channels, yet it achieves better quality and higher frame rate than conventional focused beamforming. However, this was also demonstrated using the DAS beamformer. In this work, we aim at achieving a reduction in computational cost, in addition to a reduction in system complexity, by implementing a fast and efficient frequency–wavenumber ( $\omega $ - ${k}$ ) algorithm for the sparse DBSAT scheme. In doing so, an additional novel step of recovering missing frame data due to sparse transmit is introduced, namely, projection onto elliptical sets (POES). The results from this novel combination of $\omega $ - ${k}$ with POES recovery showed that it is feasible to achieve several orders of magnitude faster reconstruction compared with the standard DAS beamforming, without any compromise in the image quality and, in some cases, with improved image quality. The average value of the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) calculated from cyst at 15-mm depth obtained using the different schemes was 4.94 and 5.73 dB better when $\omega $ - ${k}$ was employed instead of DAS, respectively. In addition, for the sparse data set acquired with a 50% overlap during transmit and 64 active receive elements, DAS reconstruction takes as long as ~647 s, whereas the $\omega $ - ${k}$ algorithm takes only ~2 s when programmed and executed in MATLAB.

...read more

References
More filters

Journal ArticleDOI
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

...read more

30,333 citations


Journal ArticleDOI
TL;DR: A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested, which relies on the Tupholme-Stepanishen method for calculating pulsing pressure fields and can also handle the continuous wave and pulse-echo case.

...read more

Abstract: A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given. >

...read more

2,093 citations


Journal ArticleDOI
01 Feb 1978-Geophysics
Abstract: Wave equation migration is known to be simpler in principle when the horizontal coordinate or coordinates are replaced by their Fourier conjugates. Two practical migration schemes utilizing this concept are developed in this paper. One scheme extends the Claerbout finite difference method, greatly reducing dispersion problems usually associated with this method at higher dips and frequencies. The second scheme effects a Fourier transform in both space and time; by using the full scalar wave equation in the conjugate space, the method eliminates (up to the aliasing frequency) dispersion altogether. The second method in particular appears adaptable to three‐dimensional migration and migration before stack.

...read more

1,187 citations


Additional excerpts

  • ...Prior Work in Frequency-Domain Beamforming: The ω-k algorithm, also referred to as omega-k, range migration, Stolt migration, and so on in various studies, is originated from the field of seismic imaging [13], which was later...

    [...]


Journal ArticleDOI
22 Dec 2006-Ultrasonics
TL;DR: The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound, where data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data.

...read more

Abstract: The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The paper demonstrates the many benefits of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging.

...read more

606 citations


Journal ArticleDOI
Abstract: Multi-element synthetic aperture imaging methods suitable for applications with severe cost and size limitations are explored. Array apertures are synthesized using an active multi-element receive subaperture and a multi-element transmit subaperture defocused to emulate a single-element spatial response with high acoustic power. Echo signals are recorded independently by individual elements of the receive subaperture. Each method uses different spatial frequencies and acquisition strategies for imaging, and therefore different sets of active transmit/receive element combinations. Following acquisition, image points are reconstructed using the complete data set with full dynamic focus on both transmit and receive. Various factors affecting image quality have been evaluated and compared to conventional imagers through measurements with a 3.5 MHz, 128-element transducer array on different gel phantoms. Multielement synthetic aperture methods achieve higher electronic signal to noise ratio and better contrast resolution than conventional synthetic aperture techniques, approaching conventional phased array performance. >

...read more

560 citations