scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper starts from the template-based approach based on the LINE2D/LINEMOD representation, yet extends it in two ways to learn the templates in a discriminative fashion, and proposes a scheme based on cascades that speeds up detection.
Abstract: In this paper we propose a new method for detecting multiple specific 3D objects in real time. We start from the template-based approach based on the LINE2D/LINEMOD representation introduced recently by Hinterstoisser et al., yet extend it in two ways. First, we propose to learn the templates in a discriminative fashion. We show that this can be done online during the collection of the example images, in just a few milliseconds, and has a big impact on the accuracy of the detector. Second, we propose a scheme based on cascades that speeds up detection. Since detection of an object is fast, new objects can be added with very low cost, making our approach scale well. In our experiments, we easily handle 10-30 3D objects at frame rates above 10fps using a single CPU core. We outperform the state-of-the-art both in terms of speed as well as in terms of accuracy, as validated on 3 different datasets. This holds both when using monocular color images (with LINE2D) and when using RGBD images (with LINEMOD). Moreover, we propose a challenging new dataset made of 12 objects, for future competing methods on monocular color images.

182 citations


Cites methods from "Object recognition from local scale..."

  • ...However, methods are expected to be more efficient (detecting multiple objects in realtime) and more accurate (less false positives/false negatives, as well as more precise localization and pose estimation)....

    [...]

Book
08 Sep 2014
TL;DR: A survey of the field of Music Information Retrieval, in particular paying attention to latest developments, such as semantic auto-tagging and user-centric retrieval and recommendation approaches, is provided.
Abstract: We provide a survey of the field of Music Information Retrieval (MIR), in particular paying attention to latest developments, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. We first elaborate on well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification ("query by example"). Subsequently, we review current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. Eventually, a discussion about the major open challenges concludes the survey.

182 citations


Cites background from "Object recognition from local scale..."

  • ...from text [299] or object recognition in images [154, 160]....

    [...]

Patent
09 Mar 2009
TL;DR: In this article, an apparatus and method for detecting a region of interest in an image is disclosed, where image representations for a set of images that have been manually annotated with regions of interest are stored, along with positive and negative representations of each image which are similarly derived to the image representations except that they are based on features extracted from patches within the region and outside it, respectively.
Abstract: An apparatus and method for detecting a region of interest in an image are disclosed. Image representations for a set of images that have been manually annotated with regions of interest are stored, along with positive and negative representations of each image which are similarly derived to the image representations except that they are based on features extracted from patches within the region of interest and outside it, respectively. For an original image for which a region of interest is desired, the stored information for K similar images is automatically retrieved and used to train a classifier. The trained classifier provides, for each patch of the original image, a probability of being in a region of interest, based extracted features of the patch (represented, for example, as a Fisher vector), which can be used to determine a region of interest in the original image.

181 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: To achieve robustness to partial occlusions, this work uses an individual local tracker for each segment of the articulated structure, which enforces the anatomical hand structure through soft constraints on the joints between adjacent segments.
Abstract: We present a method for tracking a hand while it is interacting with an object This setting is arguably the one where hand-tracking has most practical relevance, but poses significant additional challenges: strong occlusions by the object as well as self-occlusions are the norm, and classical anatomical constraints need to be softened due to the external forces between hand and object To achieve robustness to partial occlusions, we use an individual local tracker for each segment of the articulated structure The segments are connected in a pairwise Markov random field, which enforces the anatomical hand structure through soft constraints on the joints between adjacent segments The most likely hand configuration is found with belief propagation Both range and color data are used as input Experiments are presented for synthetic data with ground truth and for real data of people manipulating objects

181 citations

Proceedings ArticleDOI
19 Oct 2009
TL;DR: A new content-based retrieval framework applied to logo retrieval in large natural image collections is presented and a new visual query expansion method using an a contrario thresholding strategy in order to improve the accuracy of expanded query images.
Abstract: This paper presents a new content-based retrieval framework applied to logo retrieval in large natural image collections. The first contribution is a new challenging dataset, called BelgaLogos, which was created in collaboration with professionals of a press agency, in order to evaluate logo retrieval technologies in real-world scenarios. The second and main contribution is a new visual query expansion method using an a contrario thresholding strategy in order to improve the accuracy of expanded query images. Whereas previous methods based on the same paradigm used a purely hand tuned fixed threshold, we provide a fully adaptive method enhancing both genericity and effectiveness. This new technique is evaluated on both OxfordBuilding dataset and our new BelgaLogos dataset.

181 citations


Cites background or methods from "Object recognition from local scale..."

  • ...We discovered for example that even with 4000 SIFT features [6] extracted per image, a...

    [...]

  • ...Recently, in [9], Rabin et al. proposed an a contrario matching of SIFT like features....

    [...]

  • ...Each image Ij is represented by a set of nj SIFT [6] features Fji, with corresponding positions Pji for i ∈ {1, ....

    [...]

  • ...We discovered for example that even with 4000 SIFT features [6] extracted per image, a 1work funded by the European Project VITALAS Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page....

    [...]

  • ...Each image Ij is represented by a set of nj SIFT [6] features Fji, with corresponding positions Pji for i ∈ {1, . . . , nj}....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]