scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
28 May 2002
TL;DR: A novel approach for detecting affine invariant interest points that can deal with significant affine transformations including large scale changes and shows an excellent performance in the presence of large perspective transformations including significant scale changes.
Abstract: This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of the neighbourhood of an interest point. Our approach allows to solve for these problems simultaneously. It is based on three key ideas : 1) The second moment matrix computed in a point can be used to normalize a region in an affine invariant way (skew and stretch). 2) The scale of the local structure is indicated by local extrema of normalized derivatives over scale. 3) An affine-adapted Harris detector determines the location of interest points. A multi-scale version of this detector is used for initialization. An iterative algorithm then modifies location, scale and neighbourhood of each point and converges to affine invariant points. For matching and recognition, the image is characterized by a set of affine invariant points; the affine transformation associated with each point allows the computation of an affine invariant descriptor which is also invariant to affine illumination changes. A quantitative comparison of our detector with existing ones shows a significant improvement in the presence of large affine deformations. Experimental results for wide baseline matching show an excellent performance in the presence of large perspective transformations including significant scale changes. Results for recognition are very good for a database with more than 5000 images.

1,608 citations


Cites background or methods from "Object recognition from local scale..."

  • ...A uniform Gaussian scale-space is often used to deal with scale changes [3, 7, 10, 11]....

    [...]

  • ...Lowe [10] proposes an efficient algorithm for recognition based on local extrema of difference-of-Gaussian filters in scale-space....

    [...]

  • ...Scale invariant interest points detectors have been presented previously [10, 11]....

    [...]

01 Jan 2008
TL;DR: In this paper, a large dataset of 79,302,017 images collected from the Internet is used to explore the visual world with the aid of a variety of non-parametric methods.
Abstract: With the advent of the Internet, billions of images are now freely available online and constitute a dense sampling of the visual world. Using a variety of non-parametric methods, we explore this world with the aid of a large dataset of 79,302,017 images collected from the Internet. Motivated by psychophysical results showing the remarkable tolerance of the human visual system to degradations in image resolution, the images in the dataset are stored as 32 x 32 color images. Each image is loosely labeled with one of the 75,062 non-abstract nouns in English, as listed in the Wordnet lexical database. Hence the image database gives a comprehensive coverage of all object categories and scenes. The semantic information from Wordnet can be used in conjunction with nearest-neighbor methods to perform object classification over a range of semantic levels minimizing the effects of labeling noise. For certain classes that are particularly prevalent in the dataset, such as people, we are able to demonstrate a recognition performance comparable to class-specific Viola-Jones style detectors.

1,607 citations

Journal ArticleDOI
TL;DR: A probabilistic approach to the problem of recognizing places based on their appearance that can determine that a new observation comes from a previously unseen place, and so augment its map, and is particularly suitable for online loop closure detection in mobile robotics.
Abstract: This paper describes a probabilistic approach to the problem of recognizing places based on their appearance. The system we present is not limited to localization, but can determine that a new observation comes from a previously unseen place, and so augment its map. Effectively this is a SLAM system in the space of appearance. Our probabilistic approach allows us to explicitly account for perceptual aliasing in the environment—identical but indistinctive observations receive a low probability of having come from the same place. We achieve this by learning a generative model of place appearance. By partitioning the learning problem into two parts, new place models can be learned online from only a single observation of a place. The algorithm complexity is linear in the number of places in the map, and is particularly suitable for online loop closure detection in mobile robotics.

1,582 citations


Cites background from "Object recognition from local scale..."

  • ...Local feature schemes consist of a region-of-interest detector combined with a descriptor of the local region, SIFT (Lowe 1999) being a popular example....

    [...]

  • ...Silpa-Anan and Hartley (2004, 2005) describe a similar system which employs SIFT features....

    [...]

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work identifies a vocabulary of forty-seven texture terms and uses them to describe a large dataset of patterns collected "in the wild", and shows that they both outperform specialized texture descriptors not only on this problem, but also in established material recognition datasets.
Abstract: Patterns and textures are key characteristics of many natural objects: a shirt can be striped, the wings of a butterfly can be veined, and the skin of an animal can be scaly. Aiming at supporting this dimension in image understanding, we address the problem of describing textures with semantic attributes. We identify a vocabulary of forty-seven texture terms and use them to describe a large dataset of patterns collected "in the wild". The resulting Describable Textures Dataset (DTD) is a basis to seek the best representation for recognizing describable texture attributes in images. We port from object recognition to texture recognition the Improved Fisher Vector (IFV) and Deep Convolutional-network Activation Features (DeCAF), and show that surprisingly, they both outperform specialized texture descriptors not only on our problem, but also in established material recognition datasets. We also show that our describable attributes are excellent texture descriptors, transferring between datasets and tasks, in particular, combined with IFV and DeCAF, they significantly outperform the state-of-the-art by more than 10% on both FMD and KTH-TIPS-2b benchmarks. We also demonstrate that they produce intuitive descriptions of materials and Internet images.

1,566 citations


Cites methods from "Object recognition from local scale..."

  • ...Given an image `, the Fisher Vector (FV) formulation of [26] starts by extracting local SIFT [20] descriptors {d1, ....

    [...]

  • ...The first one is the use of the SIFT descriptors, originally developed for object matching [20], that are more distinctive that local descriptors popular in texture analysis such as filter banks [13, 19, 36], local intensity patterns [23], and patches [35]....

    [...]

Posted Content
TL;DR: This work presents a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and shows that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art3D shape descriptors.
Abstract: A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.

1,508 citations


Cites methods from "Object recognition from local scale..."

  • ...Another advantage of using 2D representations is that we can leverage (i) advances in image descriptors [22, 26] and (ii) massive image databases (such as ImageNet [9]) to pre-train our CNN architectures....

    [...]

  • ...[30] proposed using Fisher vectors [26] on SIFT features [22] for representing human sketches of shapes....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]