scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Jun 2017
TL;DR: This work proposes Cachier, a system that uses the caching model along with novel optimizations to minimize latency by adaptively balancing load between the edge and the cloud, by leveraging spatiotemporal locality of requests, using offline analysis of applications, and online estimates of network conditions.
Abstract: Recognition and perception based mobile applications, such as image recognition, are on the rise. These applications recognize the user's surroundings and augment it with information and/or media. These applications are latency-sensitive. They have a soft-realtime nature - late results are potentially meaningless. On the one hand, given the compute-intensive nature of the tasks performed by such applications, execution is typically offloaded to the cloud. On the other hand, offloading such applications to the cloud incurs network latency, which can increase the user-perceived latency. Consequently, edge computing has been proposed to let devices offload intensive tasks to edge servers instead of the cloud, to reduce latency. In this paper, we propose a different model for using edge servers. We propose to use the edge as a specialized cache for recognition applications and formulate the expected latency for such a cache. We show that using an edge server like a typical web cache, for recognition applications, can lead to higher latencies. We propose Cachier, a system that uses the caching model along with novel optimizations to minimize latency by adaptively balancing load between the edge and the cloud, by leveraging spatiotemporal locality of requests, using offline analysis of applications, and online estimates of network conditions. We evaluate Cachier for image-recognition applications and show that our techniques yield 3x speedup in responsiveness, and perform accurately over a range of operating conditions. To the best of our knowledge, this is the first work that models edge servers as caches for compute-intensive recognition applications, and Cachier is the first system that uses this model to minimize latency for these applications.

135 citations


Cites background from "Object recognition from local scale..."

  • ...Some notable local features are SIFT [28], SURF [13] and ORB [34]....

    [...]

Posted Content
TL;DR: In this paper, the authors provide a detailed account of some of the recent camera location estimation methods in the literature, followed by discussion of notable techniques for $3$D structure recovery.
Abstract: The structure from motion (SfM) problem in computer vision is the problem of recovering the three-dimensional ($3$D) structure of a stationary scene from a set of projective measurements, represented as a collection of two-dimensional ($2$D) images, via estimation of motion of the cameras corresponding to these images. In essence, SfM involves the three main stages of (1) extraction of features in images (e.g., points of interest, lines, etc.) and matching these features between images, (2) camera motion estimation (e.g., using relative pairwise camera positions estimated from the extracted features), and (3) recovery of the $3$D structure using the estimated motion and features (e.g., by minimizing the so-called reprojection error). This survey mainly focuses on relatively recent developments in the literature pertaining to stages (2) and (3). More specifically, after touching upon the early factorization-based techniques for motion and structure estimation, we provide a detailed account of some of the recent camera location estimation methods in the literature, followed by discussion of notable techniques for $3$D structure recovery. We also cover the basics of the simultaneous localization and mapping (SLAM) problem, which can be viewed as a specific case of the SfM problem. Further, our survey includes a review of the fundamentals of feature extraction and matching (i.e., stage (1) above), various recent methods for handling ambiguities in $3$D scenes, SfM techniques involving relatively uncommon camera models and image features, and popular sources of data and SfM software.

135 citations

Posted Content
TL;DR: The authors show that adversarial training is unnecessary and sometimes counter-productive, and instead cast invariant representation learning as a single information-theoretic objective that can be directly optimized.
Abstract: Representations of data that are invariant to changes in specified factors are useful for a wide range of problems: removing potential biases in prediction problems, controlling the effects of covariates, and disentangling meaningful factors of variation. Unfortunately, learning representations that exhibit invariance to arbitrary nuisance factors yet remain useful for other tasks is challenging. Existing approaches cast the trade-off between task performance and invariance in an adversarial way, using an iterative minimax optimization. We show that adversarial training is unnecessary and sometimes counter-productive; we instead cast invariant representation learning as a single information-theoretic objective that can be directly optimized. We demonstrate that this approach matches or exceeds performance of state-of-the-art adversarial approaches for learning fair representations and for generative modeling with controllable transformations.

135 citations

Journal ArticleDOI
TL;DR: An overview to vision-based sensing technology available for temporary resource tracking at infrastructure construction sites is presented and the status quo of research applications is provided by highlighting exemplary case.

134 citations

Journal ArticleDOI
TL;DR: This paper presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution.

134 citations


Cites background from "Object recognition from local scale..."

  • ...For higher order feature descriptors —such as ORB, SIFT, or SURF—the L1-norm, the L2-norm, or Hamming distances may be used; however, establishing matches using these measures is computationally intensive and may, if not carefully applied, degrade real-time performance....

    [...]

  • ...While the KD-tree is meant to accelerate SIFT feature matching, updating it with new features is computationally intensive....

    [...]

  • ...The system extracts phonySIFT descriptors as described in Wagner et al. (2010) and establishes feature correspondences using an accelerated matching method through hierarchical k-means....

    [...]

  • ...The first step is an offline procedure during which, SIFT features are780 extracted and triangulated using SfM methods into 3D landmarks....

    [...]

  • ...In the first pass, SIFT features from the current frame are matched to the selected keyframes, using the offline-generated vocabulary790 tree....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]