scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inspired by the well-known Atkinson-Shiffrin Memory Model, this work proposes MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short- and long-term memory stores to process target appearance memories.
Abstract: Variations in the appearance of a tracked object, such as changes in geometry/photometry, camera viewpoint, illumination, or partial occlusion, pose a major challenge to object tracking. Here, we adopt cognitive psychology principles to design a flexible representation that can adapt to changes in object appearance during tracking. Inspired by the well-known Atkinson-Shiffrin Memory Model, we propose MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short- and long-term memory stores to process target appearance memories. A powerful and efficient Integrated Correlation Filter (ICF) is employed in the short-term store for short-term tracking. The integrated long-term component, which is based on keypoint matching-tracking and RANSAC estimation, can interact with the long-term memory and provide additional information for output control. MUSTer was extensively evaluated on the CVPR2013 Online Object Tracking Benchmark (OOTB) and ALOV++ datasets. The experimental results demonstrated the superior performance of MUSTer in comparison with other state-of-art trackers.

694 citations


Cites methods from "Object recognition from local scale..."

  • ...Local Scale-Invariant Features [33] are a powerful tool used in various computer vision tasks including recognition [33] and scene alignment [32]....

    [...]

  • ...In particular, some promising trackers [12, 38, 41] have been proposed to model the object appearance based on Local Scale-Invariant Features (i.e., keypoints)....

    [...]

Book ChapterDOI
12 Oct 2008
TL;DR: A method to align an image to its neighbors in a large image collection consisting of a variety of scenes, and applies the SIFT flow algorithm to two applications: motion field prediction from a single static image and motion synthesis via transfer of moving objects.
Abstract: While image registration has been studied in different areas of computer vision, aligning images depicting different scenes remains a challenging problem, closer to recognition than to image matching Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its neighbors in a large image collection consisting of a variety of scenes For a query image, histogram intersection on a bag-of-visual-words representation is used to find the set of nearest neighbors in the database The SIFT flow algorithm then consists of matching densely sampled SIFT features between the two images, while preserving spatial discontinuities The use of SIFT features allows robust matching across different scene/object appearances and the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene Experiments show that the proposed approach is able to robustly align complicated scenes with large spatial distortions We collect a large database of videos and apply the SIFT flow algorithm to two applications: (i) motion field prediction from a single static image and (ii) motion synthesis via transfer of moving objects

690 citations


Cites methods from "Object recognition from local scale..."

  • ...As a fast search, we use spatial histogram matching of quantized SIFT [14,15]....

    [...]

  • ...In the SIFT flow, a SIFT descriptor [14] is extracted at each pixel to characterize local image structures and encode contextual information....

    [...]

  • ...First, we assume SIFT descriptors [14] extracted at each pixel location (instead of raw pixel values) are constant with respect to the pixel displacement field....

    [...]

Journal ArticleDOI
TL;DR: An automatic road-sign detection and recognition system based on support vector machines that is able to detect and recognize circular, rectangular, triangular, and octagonal signs and, hence, covers all existing Spanish traffic-sign shapes.
Abstract: This paper presents an automatic road-sign detection and recognition system based on support vector machines (SVMs). In automatic traffic-sign maintenance and in a visual driver-assistance system, road-sign detection and recognition are two of the most important functions. Our system is able to detect and recognize circular, rectangular, triangular, and octagonal signs and, hence, covers all existing Spanish traffic-sign shapes. Road signs provide drivers important information and help them to drive more safely and more easily by guiding and warning them and thus regulating their actions. The proposed recognition system is based on the generalization properties of SVMs. The system consists of three stages: 1) segmentation according to the color of the pixel; 2) traffic-sign detection by shape classification using linear SVMs; and 3) content recognition based on Gaussian-kernel SVMs. Because of the used segmentation stage by red, blue, yellow, white, or combinations of these colors, all traffic signs can be detected, and some of them can be detected by several colors. Results show a high success rate and a very low amount of false positives in the final recognition stage. From these results, we can conclude that the proposed algorithm is invariant to translation, rotation, scale, and, in many situations, even to partial occlusions

687 citations


Cites background from "Object recognition from local scale..."

  • ...Finally, conclusions will be presented in Section V....

    [...]

Journal Article
TL;DR: A new approach to visual navigation under changing conditions dubbed SeqSLAM, which removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images.
Abstract: Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.

686 citations


Cites methods from "Object recognition from local scale..."

  • ...Many place recognition techniques rely on feature-finding algorithms such as SIFT [9] and SURF [10] which, despite their impressive rotation and scale invariant properties, are inherently unsuitable when dealing with extreme perceptual M.J. Milford and G.F. Wyeth are with the School of Electrical Engineering and Computer Science at the Queensland University of Technology, Brisbane, Australia, michael.milford@qut.edu.au....

    [...]

  • ...In that approach, 128D vectors of SIFT descriptors were used to perform loop closure, combined with additional algorithms to address visual ambiguity caused by repetitive foliage or architecture features....

    [...]

  • ...Many place recognition techniques rely on feature-finding algorithms such as SIFT [9] and SURF [10] which, despite their impressive rotation and scale invariant properties, are inherently unsuitable when dealing with extreme perceptual...

    [...]

Proceedings ArticleDOI
01 Jan 2006
TL;DR: It is demonstrated that high precision can be achieved by combining multiple sources of information, both visual and textual, by automatic generation of time stamped character annotation by aligning subtitles and transcripts.
Abstract: We investigate the problem of automatically labelling appearances of characters in TV or film material. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking; (iii) using complementary cues of face matching and clothing matching to propose common annotations for face tracks. Results are presented on episodes of the TV series “Buffy the Vampire Slayer”.

683 citations


Cites methods from "Object recognition from local scale..."

  • ...Two descriptors were investigated: (i) the SIFT descriptor [11] computes a histogram of gradient orientation on a coarse spatial grid, aiming to emphasize strong edge features and give some robustness to image deformation....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]