scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
27 Jun 2004
TL;DR: A multi-class boosting procedure (joint boosting) is presented that reduces both the computational and sample complexity, by finding common features that can be shared across the classes.
Abstract: We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multi-class boosting procedure (joint boosting) that reduces both the computational and sample complexity, by finding common features that can be shared across the classes. The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required is observed to scale approximately logarithmically with the number of classes. In addition, we find that the features selected by independently trained classifiers are often specific to the class, whereas the features selected by the jointly trained classifiers are more generic features, such as lines and edges.

621 citations


Cites background from "Object recognition from local scale..."

  • ...In particular, it is now possible to recognize instances of highly textured objects, such as magazine covers or toys, despite clutter, occlusion and affine transformations, by using object-specific features [ 12 , 19]....

    [...]

Proceedings ArticleDOI
17 Oct 2005
TL;DR: This paper constructs a realtime event detector for each action of interest by learning a cascade of filters based on volumetric features that efficiently scans video sequences in space and time and confirms that it achieves performance comparable to a current interest point based human activity recognizer on a standard database of human activities.
Abstract: This paper studies the use of volumetric features as an alternative to popular local descriptor approaches for event detection in video sequences. Motivated by the recent success of similar ideas in object detection on static images, we generalize the notion of 2D box features to 3D spatio-temporal volumetric features. This general framework enables us to do real-time video analysis. We construct a realtime event detector for each action of interest by learning a cascade of filters based on volumetric features that efficiently scans video sequences in space and time. This event detector recognizes actions that are traditionally problematic for interest point methods - such as smooth motions where insufficient space-time interest points are available. Our experiments demonstrate that the technique accurately detects actions on real-world sequences and is robust to changes in viewpoint, scale and action speed. We also adapt our technique to the related task of human action classification and confirm that it achieves performance comparable to a current interest point based human activity recognizer on a standard database of human activities.

616 citations


Cites methods from "Object recognition from local scale..."

  • ...Our experiments demonstrate that the technique accurately detects actions on real-world sequences and is robust to changes in viewpoint, scale and action speed....

    [...]

Journal ArticleDOI
TL;DR: The authors investigate how these methods approach learning in order to assess the dependability of their decision making and propose a semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines.
Abstract: Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.

614 citations


Cites methods from "Object recognition from local scale..."

  • ...The FV model pipeline consists of a local feature extraction step, computing dense SIFT descriptors [143] from an input image, which are then mapped to Fisher Vector representations via a Gaussian mixture model (GMM) fit to the set of local descriptors of the whole training set....

    [...]

Proceedings ArticleDOI
01 Sep 2009
TL;DR: A novel matching, spatio-temporal relationship match, which is designed to measure structural similarity between sets of features extracted from two videos, thereby enabling detection and localization of complex non-periodic activities.
Abstract: Human activity recognition is a challenging task, especially when its background is unknown or changing, and when scale or illumination differs in each video. Approaches utilizing spatio-temporal local features have proved that they are able to cope with such difficulties, but they mainly focused on classifying short videos of simple periodic actions. In this paper, we present a new activity recognition methodology that overcomes the limitations of the previous approaches using local features. We introduce a novel matching, spatio-temporal relationship match, which is designed to measure structural similarity between sets of features extracted from two videos. Our match hierarchically considers spatio-temporal relationships among feature points, thereby enabling detection and localization of complex non-periodic activities. In contrast to previous approaches to ‘classify’ videos, our approach is designed to ‘detect and localize’ all occurring activities from continuous videos where multiple actors and pedestrians are present. We implement and test our methodology on a newly-introduced dataset containing videos of multiple interacting persons and individual pedestrians. The results confirm that our system is able to recognize complex non-periodic activities (e.g. ‘push’ and ‘hug’) from sets of spatio-temporal features even when multiple activities are present in the scene

612 citations


Cites methods from "Object recognition from local scale..."

  • ...Motivated by the recent success of object recognition using local features such as SIFT descriptors [7], these approaches model a human activity as a set of sparse local descriptors directly extracted from a 3-D XYT volume (i....

    [...]

Proceedings ArticleDOI
27 Jun 2004
TL;DR: Empirically to what extent pure bottom-up attention can extract useful information about the location, size and shape of objects from images and how this information can be utilized to enable unsupervised learning of Objects from unlabeled images is investigated.
Abstract: A key problem in learning multiple objects from unlabeled images is that it is a priori impossible to tell which part of the image corresponds to each individual object, and which part is irrelevant clutter which is not associated to the objects. We investigate empirically to what extent pure bottom-up attention can extract useful information about the location, size and shape of objects from images and demonstrate how this information can be utilized to enable unsupervised learning of objects from unlabeled images. Our experiments demonstrate that the proposed approach to using bottom-up attention is indeed useful for a variety of applications.

610 citations


Cites background or methods from "Object recognition from local scale..."

  • ...[16, 17]....

    [...]

  • ...The field of object recognition has seen tremendous progress over the past years, both for specific domains such as face detection [26, 30], and for more general object domains [16, 32, 8, 25, 24]....

    [...]

  • ...Note that for relative object sizes > 5%, learning and recognition done on the entire image (red dashed line) works well, as reported in [16, 17]....

    [...]

  • ...For object recognition we use Lowe’s algorithm, which uses local scale-invariant features [16], as an example for a state-of-the-art general purpose recognition system with one-shot learning capability....

    [...]

  • ...Has the patch at least three keypoints? (A minimum of three keypoints are necessary for model learning [16]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]