scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, a single hand-held consumer-grade RGB-D sensor at real-time rates is used to reconstruct dynamic geometric shapes using a set of sparse color features in combination with a dense depth constraint.
Abstract: We present a novel approach for the reconstruction of dynamic geometric shapes using a single hand-held consumer-grade RGB-D sensor at real-time rates. Our method builds up the scene model from scratch during the scanning process, thus it does not require a pre-defined shape template to start with. Geometry and motion are parameterized in a unified manner by a volumetric representation that encodes a distance field of the surface geometry as well as the non-rigid space deformation. Motion tracking is based on a set of extracted sparse color features in combination with a dense depth constraint. This enables accurate tracking and drastically reduces drift inherent to standard model-to-depth alignment. We cast finding the optimal deformation of space as a non-linear regularized variational optimization problem by enforcing local smoothness and proximity to the input constraints. The problem is tackled in real-time at the camera’s capture rate using a data-parallel flip-flop optimization strategy. Our results demonstrate robust tracking even for fast motion and scenes that lack geometric features.

325 citations

Posted Content
TL;DR: It is suggested that those transformations that change only some properties of the underlying world state, while leaving all other properties invariant are what gives exploitable structure to any kind of data.
Abstract: How can intelligent agents solve a diverse set of tasks in a data-efficient manner? The disentangled representation learning approach posits that such an agent would benefit from separating out (disentangling) the underlying structure of the world into disjoint parts of its representation. However, there is no generally agreed-upon definition of disentangling, not least because it is unclear how to formalise the notion of world structure beyond toy datasets with a known ground truth generative process. Here we propose that a principled solution to characterising disentangled representations can be found by focusing on the transformation properties of the world. In particular, we suggest that those transformations that change only some properties of the underlying world state, while leaving all other properties invariant, are what gives exploitable structure to any kind of data. Similar ideas have already been successfully applied in physics, where the study of symmetry transformations has revolutionised the understanding of the world structure. By connecting symmetry transformations to vector representations using the formalism of group and representation theory we arrive at the first formal definition of disentangled representations. Our new definition is in agreement with many of the current intuitions about disentangling, while also providing principled resolutions to a number of previous points of contention. While this work focuses on formally defining disentangling - as opposed to solving the learning problem - we believe that the shift in perspective to studying data transformations can stimulate the development of better representation learning algorithms.

324 citations


Cites background from "Object recognition from local scale..."

  • ...Much of the research on perception and representation learning, especially in object recognition, has followed Gibson and his contemporaries in emphasising features which are invariant to transformations like pose or illumination [56, 22, 71, 49]....

    [...]

Posted Content
TL;DR: In this article, a more comprehensive integration of deformable convolution within the network, and by introducing a modulation mechanism that expands the scope of deformation modeling, is proposed to guide network training via a feature mimicking scheme.
Abstract: The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination of its adaptive behavior, we observe that while the spatial support for its neural features conforms more closely than regular ConvNets to object structure, this support may nevertheless extend well beyond the region of interest, causing features to be influenced by irrelevant image content. To address this problem, we present a reformulation of Deformable ConvNets that improves its ability to focus on pertinent image regions, through increased modeling power and stronger training. The modeling power is enhanced through a more comprehensive integration of deformable convolution within the network, and by introducing a modulation mechanism that expands the scope of deformation modeling. To effectively harness this enriched modeling capability, we guide network training via a proposed feature mimicking scheme that helps the network to learn features that reflect the object focus and classification power of R-CNN features. With the proposed contributions, this new version of Deformable ConvNets yields significant performance gains over the original model and produces leading results on the COCO benchmark for object detection and instance segmentation.

324 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: PVN3D as mentioned in this paper proposes a deep Hough voting network to detect 3D keypoints of objects and then estimate the 6D pose parameters within a least-squares fitting manner.
Abstract: In this work, we present a novel data-driven method for robust 6DoF object pose estimation from a single RGBD image. Unlike previous methods that directly regressing pose parameters, we tackle this challenging task with a keypoint-based approach. Specifically, we propose a deep Hough voting network to detect 3D keypoints of objects and then estimate the 6D pose parameters within a least-squares fitting manner. Our method is a natural extension of 2D-keypoint approaches that successfully work on RGB based 6DoF estimation. It allows us to fully utilize the geometric constraint of rigid objects with the extra depth information and is easy for a network to learn and optimize. Extensive experiments were conducted to demonstrate the effectiveness of 3D-keypoint detection in the 6D pose estimation task. Experimental results also show our method outperforms the state-of-the-art methods by large margins on several benchmarks. Code and video are available at https://github.com/ethnhe/PVN3D.git.

323 citations

Journal ArticleDOI
TL;DR: Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology.
Abstract: Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.

323 citations


Cites background from "Object recognition from local scale..."

  • ..., in SIFT [32]) and face detection [33]....

    [...]

  • ...In our work, we included six types of Box Filters in total, comprising two-, three-, and four-rectangle features similar to those used by Viola and Jones [31], and an additional two-rectangle “center-surround” feature. c. Edge Orientation Histograms (EOH): These features have recently become popular for a wide variety of tasks, including object recognition (e.g., in SIFT [32]) and face detection [33]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]