scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that Barlow's principle of inference by the detection of suspicious coincidences enables computationally efficient saliency measures which are nearly optimal for classification.
Abstract: A discriminant formulation of top-down visual saliency, intrinsically connected to the recognition problem, is proposed. The new formulation is shown to be closely related to a number of classical principles for the organization of perceptual systems, including infomax, inference by detection of suspicious coincidences, classification with minimal uncertainty, and classification with minimum probability of error. The implementation of these principles with computational parsimony, by exploitation of the statistics of natural images, is investigated. It is shown that Barlow's principle of inference by the detection of suspicious coincidences enables computationally efficient saliency measures which are nearly optimal for classification. This principle is adopted for the solution of the two fundamental problems in discriminant saliency, feature selection and saliency detection. The resulting saliency detector is shown to have a number of interesting properties, and act effectively as a focus of attention mechanism for the selection of interest points according to their relevance for visual recognition. Experimental evidence shows that the selected points have good performance with respect to 1) the ability to localize objects embedded in significant amounts of clutter, 2) the ability to capture information relevant for image classification, and 3) the richness of the set of visual attributes that can be considered salient.

308 citations


Additional excerpts

  • ...Ç...

    [...]

Book ChapterDOI
23 Aug 2020
TL;DR: This work proposes PODNet, a model inspired by representation learning that fights catastrophic forgetting, even over very long runs of small incremental tasks --a setting so far unexplored by current works.
Abstract: Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks – a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatial-based distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively.

306 citations


Cites background from "Object recognition from local scale..."

  • ...axes the similarity denition. Pooling is an important operation in Computer Vision, with a strong theoretical motivation. In the past, pooling has been introduced to obtain invariant representations [26,21]. Here, the justication is similar, but the goal is dierent: as we will see, the pooled indexes are aggregated in the proposed loss, allowing plasticity. Instead of the model acquiring invariance to...

    [...]

Posted Content
TL;DR: An up to date survey on AutoML and proposes a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods.
Abstract: Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

305 citations


Cites methods from "Object recognition from local scale..."

  • ...For example, in computer vision, an early concept was Scale-Invariant Feature Transform (SIFT) [158] and histograms of oriented gradients (HoG) [159]....

    [...]

Proceedings ArticleDOI
13 Jun 2005
TL;DR: This paper presents a system for fully automatic recognition and reconstruction of 3D objects in image databases, using invariant local features to find matches between all images, and the RANSAC algorithm to find those that are consistent with the fundamental matrix.
Abstract: This paper presents a system for fully automatic recognition and reconstruction of 3D objects in image databases. We pose the object recognition problem as one of finding consistent matches between all images, subject to the constraint that the images were taken from a perspective camera. We assume that the objects or scenes are rigid. For each image, we associate a camera matrix, which is parameterised by rotation, translation and focal length. We use invariant local features to find matches between all images, and the RANSAC algorithm to find those that are consistent with the fundamental matrix. Objects are recognised as subsets of matching images. We then solve for the structure and motion of each object, using a sparse bundle adjustment algorithm. Our results demonstrate that it is possible to recognise and reconstruct 3D objects from an unordered image database with no user input at all.

304 citations


Cites background or methods from "Object recognition from local scale..."

  • ...Until recently, the majority of object recognition algorithms have depended upon some form of training phase [9, 18]....

    [...]

  • ...By using descriptors that are invariant not just to translation, but also to rotation [16], scale [9] and affine warping [3, 12, 11], invariant features provide much more robust matching than previous correlation based methods....

    [...]

Proceedings ArticleDOI
TL;DR: In this article, the authors adapt three deep neural network architectures to energy disaggregation: Long Short Term Memory (LSTM), denoising autoencoders and a network which regresses the start time, end time and average power demand of each appliance activation.
Abstract: Energy disaggregation estimates appliance-by-appliance electricity consumption from a single meter that measures the whole home's electricity demand. Recently, deep neural networks have driven remarkable improvements in classification performance in neighbouring machine learning fields such as image classification and automatic speech recognition. In this paper, we adapt three deep neural network architectures to energy disaggregation: 1) a form of recurrent neural network called `long short-term memory' (LSTM); 2) denoising autoencoders; and 3) a network which regresses the start time, end time and average power demand of each appliance activation. We use seven metrics to test the performance of these algorithms on real aggregate power data from five appliances. Tests are performed against a house not seen during training and against houses seen during training. We find that all three neural nets achieve better F1 scores (averaged over all five appliances) than either combinatorial optimisation or factorial hidden Markov models and that our neural net algorithms generalise well to an unseen house.

302 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]