scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
09 May 2011
TL;DR: A novel interest keypoint extraction method that operates on range images generated from arbitrary 3D point clouds, which explicitly considers the borders of the objects identified by transitions from foreground to background, and a feature descriptor that takes the same information into account.
Abstract: In this paper we address the topic of feature extraction in 3D point cloud data for object recognition and pose identification. We present a novel interest keypoint extraction method that operates on range images generated from arbitrary 3D point clouds, which explicitly considers the borders of the objects identified by transitions from foreground to background. We furthermore present a feature descriptor that takes the same information into account. We have implemented our approach and present rigorous experiments in which we analyze the individual components with respect to their repeatability and matching capabilities and evaluate the usefulness for point feature based object detection methods.

274 citations


Cites background or methods from "Object recognition from local scale..."

  • ...While SIFT and SURF are not directly transferable to 3D scans, many of the general concepts, such as the usage of gradients and the extraction of a unique orientation, are useful there....

    [...]

  • ...The underlying idea is similar to what is done in SIFT [7] and SURF [2]....

    [...]

  • ...Two of the most popular systems for extracting interest points and creating stable descriptors in the area of 2D computer vision are SIFT (Scale Invariant Feature Transform) [7] and SURF (Speeded Up Robust Features) [2]....

    [...]

01 Oct 2009
TL;DR: Sikuli as discussed by the authors allows users to take a screenshot of a GUI element (such as a toolbar button, icon, or dialog box) and query a help system using the screenshot instead of the element's name.
Abstract: We present Sikuli, a visual approach to search and automation of graphical user interfaces using screenshots. Sikuli allows users to take a screenshot of a GUI element (such as a toolbar button, icon, or dialog box) and query a help system using the screenshot instead of the element's name. Sikuli also provides a visual scripting API for automating GUI interactions, using screenshot patterns to direct mouse and keyboard events. We report a web-based user study showing that searching by screenshot is easy to learn and faster to specify than keywords. We also demonstrate several automation tasks suitable for visual scripting, such as map navigation and bus tracking, and show how visual scripting can improve interactive help systems previously proposed in the literature.

273 citations

Journal ArticleDOI
TL;DR: A computer vision algorithm is used to automatically detect and classify anomalies that occur during the powder spreading stage of the process, which has the potential to become a component of a real-time control system in an LPBF machine.
Abstract: Despite the rapid adoption of laser powder bed fusion (LPBF) Additive Manufacturing by industry, current processes remain largely open-loop, with limited real-time monitoring capabilities. While some machines offer powder bed visualization during builds, they lack automated analysis capability. This work presents an approach for in-situ monitoring and analysis of powder bed images with the potential to become a component of a real-time control system in an LPBF machine. Specifically, a computer vision algorithm is used to automatically detect and classify anomalies that occur during the powder spreading stage of the process. Anomaly detection and classification are implemented using an unsupervised machine learning algorithm, operating on a moderately-sized training database of image patches. The performance of the final algorithm is evaluated, and its usefulness as a standalone software package is demonstrated with several case studies.

273 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: A deep neural network topology that incorporates a simple to implement transformationinvariant pooling operator (TI-POOLING) that is able to efficiently handle prior knowledge on nuisance variations in the data, such as rotation or scale changes is presented.
Abstract: In this paper we present a deep neural network topology that incorporates a simple to implement transformationinvariant pooling operator (TI-POOLING). This operator is able to efficiently handle prior knowledge on nuisance variations in the data, such as rotation or scale changes. Most current methods usually make use of dataset augmentation to address this issue, but this requires larger number of model parameters and more training data, and results in significantly increased training time and larger chance of under-or overfitting. The main reason for these drawbacks is that that the learned model needs to capture adequate features for all the possible transformations of the input. On the other hand, we formulate features in convolutional neural networks to be transformation-invariant. We achieve that using parallel siamese architectures for the considered transformation set and applying the TI-POOLING operator on their outputs before the fully-connected layers. We show that this topology internally finds the most optimal "canonical" instance of the input image for training and therefore limits the redundancy in learned features. This more efficient use of training data results in better performance on popular benchmark datasets with smaller number of parameters when comparing to standard convolutional neural networks with dataset augmentation and to other baselines.

272 citations

Proceedings Article
08 Dec 2014
TL;DR: Deep symmetry networks (symnets), a generalization of convnets that forms feature maps over arbitrary symmetry groups that uses kernel-based interpolation to tractably tie parameters and pool over symmetry spaces of any dimension are introduced.
Abstract: The chief difficulty in object recognition is that objects' classes are obscured by a large number of extraneous sources of variability, such as pose and part deformation These sources of variation can be represented by symmetry groups, sets of composable transformations that preserve object identity Convolutional neural networks (convnets) achieve a degree of translational invariance by computing feature maps over the translation group, but cannot handle other groups As a result, these groups' effects have to be approximated by small translations, which often requires augmenting datasets and leads to high sample complexity In this paper, we introduce deep symmetry networks (symnets), a generalization of convnets that forms feature maps over arbitrary symmetry groups Symnets use kernel-based interpolation to tractably tie parameters and pool over symmetry spaces of any dimension Like convnets, they are trained with backpropagation The composition of feature transformations through the layers of a symnet provides a new approach to deep learning Experiments on NORB and MNIST-rot show that symnets over the affine group greatly reduce sample complexity relative to convnets by better capturing the symmetries in the data

272 citations


Cites background from "Object recognition from local scale..."

  • ...Much of the vision literature is devoted to features that reduce or remove the effects of certain symmetry groups, e.g., [18, 17]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]