scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The proposed forgery region extraction algorithm, which replaces the feature points with small superpixels as feature blocks and then merges the neighboring blocks that have similar local color features into the feature blocks to generate the merged regions to detect the detected forgery regions.
Abstract: A novel copy–move forgery detection scheme using adaptive oversegmentation and feature point matching is proposed in this paper. The proposed scheme integrates both block-based and keypoint-based forgery detection methods. First, the proposed adaptive oversegmentation algorithm segments the host image into nonoverlapping and irregular blocks adaptively. Then, the feature points are extracted from each block as block features, and the block features are matched with one another to locate the labeled feature points; this procedure can approximately indicate the suspected forgery regions. To detect the forgery regions more accurately, we propose the forgery region extraction algorithm, which replaces the feature points with small superpixels as feature blocks and then merges the neighboring blocks that have similar local color features into the feature blocks to generate the merged regions. Finally, it applies the morphological operation to the merged regions to generate the detected forgery regions. The experimental results indicate that the proposed copy–move forgery detection scheme can achieve much better detection results even under various challenging conditions compared with the existing state-of-the-art copy–move forgery detection methods.

238 citations


Cites background or methods from "Object recognition from local scale..."

  • ...As an alternative to the block-based methods, keypointbased forgery detection methods were proposed, where image keypoints are extracted and matched over the whole image to resist some image transformations while identifying duplicated regions....

    [...]

  • ...In this way, the detected regions are always composed of regular blocks, which cannot represent the accurate forgery region well; as a consequence, the recall rate of the block-based methods is always very low, for example, as in [8] and [9]....

    [...]

Journal ArticleDOI
TL;DR: This work proposes the first deep learning approach for exemplar-based local colorization, which performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image.
Abstract: We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as in traditional exemplar-based methods, our end-to-end colorization network learns how to select, propagate, and predict colors from the large-scale data. The approach performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image. More importantly, as opposed to other learning-based colorization methods, our network allows the user to achieve customizable results by simply feeding different references. In order to further reduce manual effort in selecting the references, the system automatically recommends references with our proposed image retrieval algorithm, which considers both semantic and luminance information. The colorization can be performed fully automatically by simply picking the top reference suggestion. Our approach is validated through a user study and favorable quantitative comparisons to the-state-of-the-art methods. Furthermore, our approach can be naturally extended to video colorization. Our code and models are freely available for public use.

238 citations

Journal ArticleDOI
TL;DR: This work proposes a new algorithm for tag completion, where the goal is to automatically fill in the missing tags as well as correct noisy tags for given images and represents the image-tag relation by a tag matrix, and search for the optimal tag matrix consistent with both the observed tags and the visual similarity.
Abstract: Many social image search engines are based on keyword/tag matching. This is because tag-based image retrieval (TBIR) is not only efficient but also effective. The performance of TBIR is highly dependent on the availability and quality of manual tags. Recent studies have shown that manual tags are often unreliable and inconsistent. In addition, since many users tend to choose general and ambiguous tags in order to minimize their efforts in choosing appropriate words, tags that are specific to the visual content of images tend to be missing or noisy, leading to a limited performance of TBIR. To address this challenge, we study the problem of tag completion, where the goal is to automatically fill in the missing tags as well as correct noisy tags for given images. We represent the image-tag relation by a tag matrix, and search for the optimal tag matrix consistent with both the observed tags and the visual similarity. We propose a new algorithm for solving this optimization problem. Extensive empirical studies show that the proposed algorithm is significantly more effective than the state-of-the-art algorithms. Our studies also verify that the proposed algorithm is computationally efficient and scales well to large databases.

237 citations


Cites background from "Object recognition from local scale..."

  • ...To address this challenge, we study the problem of tag completion, where the goal is to automatically fill in the missing tags as well as correct noisy tags for given images....

    [...]

Journal ArticleDOI
TL;DR: An in-depth analysis of a variation of the nonlocal means (NLM) image denoising algorithm that uses principal component analysis (PCA) to achieve a higher accuracy while reducing computational load.
Abstract: We present an in-depth analysis of a variation of the nonlocal means (NLM) image denoising algorithm that uses principal component analysis (PCA) to achieve a higher accuracy while reducing computational load. Image neighborhood vectors are first projected onto a lower dimensional subspace using PCA. The dimensionality of this subspace is chosen automatically using parallel analysis. Consequently, neighborhood similarity weights for denoising are computed using distances in this subspace rather than the full space. The resulting algorithm is referred to as principal neighborhood dictionary (PND) nonlocal means. We investigate PND's accuracy as a function of the dimensionality of the projection subspace and demonstrate that denoising accuracy peaks at a relatively low number of dimensions. The accuracy of NLM and PND are also examined with respect to the choice of image neighborhood and search window sizes. Finally, we present a quantitative and qualitative comparison of PND versus NLM and another image neighborhood PCA-based state-of-the-art image denoising algorithm.

236 citations

Proceedings Article
01 Jan 2006
TL;DR: This paper introduces and experiment with a framework for learning local perceptual distance functions for visual recognition as a combination of elementary distances between patch-based visual features, and applies this framework to the tasks of image retrieval and classification of novel images.
Abstract: In this paper we introduce and experiment with a framework for learning local perceptual distance functions for visual recognition. We learn a distance function for each training image as a combination of elementary distances between patch-based visual features. We apply these combined local distance functions to the tasks of image retrieval and classification of novel images. On the Caltech 101 object recognition benchmark, we achieve 60.3% mean recognition across classes using 15 training images per class, which is better than the best published performance by Zhang, et al.

236 citations


Cites methods from "Object recognition from local scale..."

  • ...On the Caltech 101 object recognition benchmark, we achieve 60.3% mean recognition across classes using 15 training images per class, which is better than the best published performance by Zhang, et al....

    [...]

  • ...If we haveN training images, we will be solvingN separate learning problems....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]