scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Object recognition from local scale-invariant features

20 Sep 1999-Vol. 2, pp 1150-1157
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This article provides a detailed overview of various state-of-the-art research papers on human activity recognition, discussing both the methodologies developed for simple human actions and those for high-level activities.
Abstract: Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This article provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen that compares the advantages and limitations of each approach. Recognition methodologies for an analysis of the simple actions of a single person are first presented in the article. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the article. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our article as well, comparing the methodologies' performances. This review will provide the impetus for future research in more productive areas.

2,084 citations


Cites background from "Object recognition from local scale..."

  • ...These approaches are particularly motivated by the success of the object recognition methodologies using sparse local appearance features, such as SIFT descriptors [Lowe 1999]....

    [...]

  • ...N, Month 20YY....

    [...]

01 Jan 2006
TL;DR: This report presents the results of the 2006 PASCAL Visual Object Classes Challenge (VOC2006).
Abstract: This report presents the results of the 2006 PASCAL Visual Object Classes Challenge (VOC2006). Details of the challenge, data, and evaluation are presented. Participants in the challenge submitted descriptions of their methods, and these have been included verbatim. This document should be considered preliminary, and subject to change.

2,034 citations


Cites background or methods from "Object recognition from local scale..."

  • ...The TextonBoost algorithm [1] was used with minor modifications reflecting the considerably different problem being posed in the VOC2006 as compared with the original work....

    [...]

  • ...Inspired by the success of histogram-based descriptors for recognition [1,5,7,8], we use histograms of gradient orientation as image features....

    [...]

  • ...[1] Chih-Chung Chang and Chih-Jen Lin....

    [...]

  • ...The method used follows the method described in [1]....

    [...]

  • ...Classification We used the implementation of [1] to train linear SVM classifiers on the normalized image histograms....

    [...]

Journal ArticleDOI
TL;DR: For a broad family of features, this work finds that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid, and this approximation yields considerable speedups with negligible loss in detection accuracy.
Abstract: Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).

2,000 citations


Cites background from "Object recognition from local scale..."

  • ...Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations


Cites background from "Object recognition from local scale..."

  • ..., SIFT [178] and HOG [52]) and to explore approaches (e....

    [...]

  • ...Handcrafted local invariant features gained tremendous popularity, starting from the Scale Invariant Feature Transform (SIFT) feature [178], and the progress on various visual recognition tasks was based substantially on the use of local descriptors [187] such as Haar-like features [276], SIFT [179], Shape Contexts [12], Histogram of Gradients (HOG) [52] Local Binary Patterns (LBP) [196], and region covariances [268]....

    [...]

  • ...4 Milestones of object detection and recognition, including feature representations [47, 52, 101, 140, 147, 178, 179, 212, 248, 252, 263, 276, 279], detection frameworks [74, 85, 239, 271, 276], and datasets [68, 166, 234]....

    [...]

Proceedings ArticleDOI
02 Nov 2010
TL;DR: This work considers a standard non-spatial representation in which the frequencies but not the locations of quantized image features are used to discriminate between classes analogous to how words are used for text document classification without regard to their order of occurrence, and considers two spatial extensions.
Abstract: We investigate bag-of-visual-words (BOVW) approaches to land-use classification in high-resolution overhead imagery. We consider a standard non-spatial representation in which the frequencies but not the locations of quantized image features are used to discriminate between classes analogous to how words are used for text document classification without regard to their order of occurrence. We also consider two spatial extensions, the established spatial pyramid match kernel which considers the absolute spatial arrangement of the image features, as well as a novel method which we term the spatial co-occurrence kernel that considers the relative arrangement. These extensions are motivated by the importance of spatial structure in geographic data.The methods are evaluated using a large ground truth image dataset of 21 land-use classes. In addition to comparisons with standard approaches, we perform extensive evaluation of different configurations such as the size of the visual dictionaries used to derive the BOVW representations and the scale at which the spatial relationships are considered.We show that even though BOVW approaches do not necessarily perform better than the best standard approaches overall, they represent a robust alternative that is more effective for certain land-use classes. We also show that extending the BOVW approach with our proposed spatial co-occurrence kernel consistently improves performance.

1,896 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,672 citations

Journal ArticleDOI
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.

4,310 citations

Journal ArticleDOI
TL;DR: A near real-time recognition system with 20 complex objects in the database has been developed and a compact representation of object appearance is proposed that is parametrized by pose and illumination.
Abstract: The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties and constant for a rigid object, pose and illumination vary from scene to scene. A compact representation of object appearance is proposed that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a manifold. Given an unknown input image, the recognition system projects the image to eigenspace. The object is recognized based on the manifold it lies on. The exact position of the projection on the manifold determines the object's pose in the image. A variety of experiments are conducted using objects with complex appearance characteristics. The performance of the recognition and pose estimation algorithms is studied using over a thousand input images of sample objects. Sensitivity of recognition to the number of eigenspace dimensions and the number of learning samples is analyzed. For the objects used, appearance representation in eigenspaces with less than 20 dimensions produces accurate recognition results with an average pose estimation error of about 1.0 degree. A near real-time recognition system with 20 complex objects in the database has been developed. The paper is concluded with a discussion on various issues related to the proposed learning and recognition methodology.

2,037 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations


"Object recognition from local scale..." refers background or methods in this paper

  • ...This allows for the use of more distinctive image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the descriptor is further modified to improve its stability to changes in affine projection and illumination....

    [...]

  • ...For the object recognition problem, Schmid & Mohr [19] also used the Harris corner detector to identify interest points, and then created a local image descriptor at each interest point from an orientation-invariant vector of derivative-of-Gaussian image measurements....

    [...]

  • ..., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

  • ...However, recent research on the use of dense local features (e.g., Schmid & Mohr [19]) has shown that efficient recognition can often be achieved by using local image descriptors sampled at a large number of repeatable locations....

    [...]

Journal ArticleDOI
TL;DR: A robust approach to image matching by exploiting the only available geometric constraint, namely, the epipolar constraint, is proposed and a new strategy for updating matches is developed, which only selects those matches having both high matching support and low matching ambiguity.

1,574 citations


"Object recognition from local scale..." refers methods in this paper

  • ...[23] used the Harris corner detector to identify feature locations for epipolar alignment of images taken from differing viewpoints....

    [...]