scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Observation of discrete VLF emissions at Indian low-latitude ground station Srinagar (L = 1.28)

TL;DR: In this article, the spectral analysis of the observed discrete very low-frequency emissions consisting of risers, fallers, hooks and oscillating tones has been presented to explain the observed dynamic spectra of the discrete chorus emissions.
Abstract: During the routine analysis of recorded very low-frequency data during the period November, 2012 to February, 2013, at an Indian low-latitude ground station Srinagar (geomag. lat., 24°10′N; L = 1.28), we observed some interesting discrete emissions during quiet period on February 5, 2013, which has been presented in the present study. The spectral analysis of the observed discrete very low-frequency emissions consisting of risers, fallers, hooks and oscillating tones has been presented. To explain the observed dynamic spectra of the discrete chorus emissions, a possible generation mechanism has been presented based on the recent nonlinear theory. On the basis of this theory, frequency sweep rate of discrete chorus emissions has been computed and compared with those of our experimentally observed values.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8.9043 was presented for application to the local time interval 00-15 MLT, and a way to extend the model to the 15-24 MLT period is presented.
Abstract: Attention is given to an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8. Although the model is primarily intended for application to the local time interval 00-15 MLT, a way to extend the model to the 15-24-MLT period is presented. The model describes, in piecewise fashion, the 'saturated' plasmasphere, the region of steep plasmapause gradients, and the plasma trough. Within the plasmasphere the model profile can be expressed as logne - Sigma-xi, where x1 = -0.3145L + 3.9043 is the principal or 'reference' term, and additional terms account for: a solar cycle variation with a peak at solar maximum; an annual variation with a December maximum; and a semiannual variation with equinoctial maxima.

787 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency and found that the seeds of chorus emissions with a rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude.
Abstract: [1] The generation process of whistler-mode chorus emissions is analyzed by both theory and simulation. Driven by an assumed strong temperature anisotropy of energetic electrons, the initial wave growth of chorus is linear. After the linear growth phase, the wave amplitude grows nonlinearly. It is found that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. We derive the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency. Wave trapping of resonant electrons near the equator results in the formation of an electromagnetic electron hole in the wave phase space. For a specific wave phase variation, corresponding to a rising frequency, the electron hole can form a resonant current that causes growth of a wave with a rising frequency. Seeds of chorus elements grow from the saturation level of the whistler-mode instability at the equator and then propagate away from the equator. In the frame of reference moving with the group velocity, the wave frequency is constant. The wave amplitude is amplified by the nonlinear resonant current, which is sustained by the increasing inhomogeneity of the dipole magnetic field over some distance from the equator. Chorus elements are generated successively at the equator so long as a sufficient flux of energetic electrons with a strong temperature anisotropy is present.

485 citations

Journal ArticleDOI
TL;DR: Magnetospheric discrete VLF emissions, discussing gyroresonance extension, resonant electron and emission frequency are discussed in this article, where the authors also discuss the effect of gyroreance extension.
Abstract: Magnetospheric discrete VLF emissions, discussing gyroresonance extension, resonant electron and emission frequency

463 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line.
Abstract: [1] We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self-sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self-sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self-consistent particle simulations of the chorus emissions. The self-sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ωe0, where Ωe0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self-sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field.

279 citations

Journal ArticleDOI
TL;DR: In this paper, a new empirical model of the plasmapause location was developed using density data from the plasma wave receiver onboard the CRRES spacecraft for nearly 1000 orbits, and the model gives the linear best fit location of the PLP as well as the standard deviations of the model parameters.
Abstract: [1] A new empirical model of the plasmapause location has been developed using density data from the plasma wave receiver onboard the CRRES spacecraft for nearly 1000 orbits. The “plasmapause” is identified here as the innermost sharp gradient in density (change of a factor of 5 in <0.5 L). Such a sharp gradient was observed on 73% of the CRRES inbound and outbound orbits that returned data. The plasmapause location is expressed as a linear function of Kp (previous 12 hour maximum) and local time. The model gives the linear best fit location of the plasmapause as well as the standard deviations of the model parameters. We found a slight noon-midnight asymmetry with the plasmapause located on average an L shell farther from the Earth at midnight than in the noon sector. This is in the opposite sense to the noon-midnight asymmetry found previously. Significant variability (with standard deviations up to +/− 1 L shell) in the plasmapause location is seen and suggests that though the mean plasmapause is roughly circular, the instantaneous plasmapause has significant time variable localized structure at all local times but most especially in the duskside sector.

248 citations