scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Observations of paired electrostatic shocks in the polar magnetosphere

07 Feb 1977-Physical Review Letters (American Physical Society)-Vol. 38, Iss: 6, pp 292-295
TL;DR: In this article, a polar orbiting satellite was used to measure spatially confined regions of extremely large electric fields in the auroral zone at altitudes below 8000 km, which are identified as paired electrostatic shocks which are associated with electrostatic ion cyclotron wave turbulence.
Abstract: dc and ac plasma-density and vector-electric-field detectors on a polar orbiting satellite have measured spatially confined regions of extremely large (\ensuremath{\sim}\textonehalf{} V/m) electric fields in the auroral zone at altitudes below 8000 km. Such regions frequently have double structures of opposing electric fields containing characteristic and different wave spectra internal and external to themselves. These structures are identified as paired electrostatic shocks which are associated with electrostatic ion cyclotron wave turbulence.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a simple two-dimensional model of the magnetosphere-ionosphere system is discussed in which a localized electromotive force applied across a magnetic field line at t = 0 is shown to propagate along the magnetic field with the Alfven velocity.
Abstract: A simple two-dimensional model of the magnetosphere-ionosphere system is discussed in which a localized electromotive force applied across a magnetic field line at t=0 is shown to propagate along the magnetic field with the Alfven velocity. The perpendicular electric field is assumed to reverse direction across the field line. Since the perpendicular electric field is limited in space, the propagation involves parallel electric fields whose magnitude depends on the characteristic scale length of the applied emf and the local plasma parameters. The electric field pulse associated with the ‘shock’ front is reflected at the ionosphere and propagates back to the source region. The finite Pedersen conductivity in the ionosphere damps the wave, and a steady state current system is established in the order of several hours. The parallel electric field can accelerate ions and electrons.

545 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report observations of fast solitary waves that are ubiquitous in downward current regions of the mid-altitude auroral zone and propose that these nonlinear structures play a key role in supporting parallel electric fields.
Abstract: We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.

531 citations

Journal ArticleDOI
TL;DR: In this article, the S3-3 satellite results on DC electric fields, field-aligned currents, and waves are described, interpreted theoretically, and applied to the understanding of auroral particle acceleration at altitudes below 8000 km.
Abstract: Several previous and new S3-3 satellite results on DC electric fields, field-aligned currents, and waves are described, interpreted theoretically, and applied to the understanding of auroral particle acceleration at altitudes below 8000 km. These results include the existence of two spatial scale sizes (less than 0.1 degree and a few degrees invariant latitude) in both the perpendicular and parallel electric fields; the predominance of S-shaped rather than V-shaped equipotential contours on both spatial saales; the correlated presence of field-aligned currents, low frequency wave turbulence, coherent ion cyclotron wave emissions and accelerated upmoving ions and downgoing electrons; intense waves inside electrostatic shocks and important wave-particle interactions therein; correlations of field-aligned currents with magnetospheric boundaries that are determined by convection electric field measurements; electron acceleration producing discrete auroral arcs in the smaller scale fields and producing inverted-V events in the larger scale fields; ion and electron acceleration due to both wave-particle interactions and the parallel electric fields. Further analyses of acceleration mechanisms and energetics are presented.

478 citations

Journal ArticleDOI
TL;DR: In this paper, the variation of the selfconsistent electrostatic potential along the magnetic field is calculated by application of the principle of quasi-neutrality to the plasma components distributed along an auroral field line.
Abstract: The variation of the self-consistent electrostatic potential along the magnetic field is calculated by application of the principle of quasi-neutrality to the plasma components distributed along an auroral field line. The equilibrium plasma consists of hot anisotropic magnetospheric plasma, ionospheric plasma evaporated or extracted upward by the parallel electrostatic field, and backscattered electrons. It is shown that the above charged particle populations can support a potential difference of up to several Kilovolts between the equator and the ionosphere along an auroral field line. Moreover, the corresponding parallel electric field has the proper signature to account for electron precipitation characteristics. Comparisons between theoretical and observed electron precipitation fluxes lead to estimates for the various physical parameters in the model.

385 citations

Journal ArticleDOI
TL;DR: In this paper, the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0? 10?1, was investigated by means of multi-dimensional particle-in-cell simulations.
Abstract: The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 ? 10?1. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is ? 10?3. For electron-ion plasmas, the transition to efficient acceleration occurs for ? 3 ? 10?5. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as ?maxt 1/2. This scaling is shallower than the so-called (and commonly assumed) Bohm limit ?maxt, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value ?sat/?0 mic 2 ~ ??1/4, where ?0 mic 2 is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness ??1/2 around the shock. Our results can provide physically grounded inputs for models of non-thermal emission from a variety of astrophysical sources, with particular relevance to GRB afterglows.

372 citations