scispace - formally typeset
Search or ask a question
Journal Article

Observing Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era

18 Apr 2016-Bulletin of the American Physical Society (American Physical Society)-Vol. 2016
TL;DR: In this paper, the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019.
Abstract: The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three-detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ∼5.5 kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50 kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond.

Content maybe subject to copyright    Report

Citations
More filters
Book
01 Dec 1984
TL;DR: In a recent review as mentioned in this paper, the authors reflect some of the shifts of emphasis that are occurring among the fields of astrophysics, nuclear physics, and elementary particle physics and discuss the role of rotational degrees of freedom in heavy-ion collisions at low and moderate energies.
Abstract: The contents of this review reflect some of the shifts of emphasis that are occurring among the fields of astrophysics, nuclear physics, and elementary particle physics. Particle physics has made great advances in the unification of the fundamental forces of nature. Discussions and planning for a next big step in accelerator-colliders are presented. The technology of superconducting magnet systems as well as the fundamental physical principles of particle accelerators are discussed. Also presented are: high-resolution electronic particle detectors; nuclear physics changes such as pion interactions within nuclei; discussion of future relativistic heavy-ion colliders; the role of rotational degrees of freedom in heavy-ion collisions at low and moderate energies; hyperon beta decays; and the analysis of materials via nuclear reaction techniques. Neutrinos, their interactions and possible masses, have an important bearing on cosmology and the matter density of the universe in addition to their inherent interest in the microscopic world and this is also examined.

676 citations

Journal Article
TL;DR: This work extracts gravitational waves from the spacetime curvature and identifies a unique gravitational wave signature associated with the early phase of collapsar formation.
Abstract: We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

71 citations

Journal Article
TL;DR: In this paper, the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars, were presented.
Abstract: Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ~1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >1044 erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 × 1044 d 2 1 erg and 1.4 × 1047 d 2 1 erg, respectively, where $d_\\mathrm{1} = \\frac{d_{\\mathrm{0501}}}{1\\,\\mathrm{kpc}}$ and d 0501 is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.

69 citations

01 Jan 2000
TL;DR: In this paper, the authors show that Type Ia SNe can be excluded as the source of γ-ray bursts at a high significance level (greater than 4 σ) and that the current data are consistent with Type Ib/c SNe as GRB producers.
Abstract: SN 1998bw and its corresponding relativistically expanding radio source are coincident with the γ-ray burst source GRB 980425. We searched for other possible supernova-γ-ray burst associations among 101 recent Type Ia and 17 Type Ib/c supernovae (SNe) for which the dates of optical maximum are relatively well known. We show that Type Ia SNe can be excluded as the source of γ-ray bursts (GRBs) at a high significance level (greater than 4 σ) and that the current data are consistent with Type Ib/c SNe as GRB producers. If the Type Ib/c event SN 1998bw does not represent a special class of GRBs, but is representative of the general mechanism for GRBs, it would imply GRB energies that are some fraction of an SN energy. This in turn demands strong collimation into perhaps 10-3 sr to explain GRBs at higher redshifts. Such collimation requires a high rate of occurrence, perhaps consistent with an SN rate. The collimated flow may be generated by core collapse to produce rotating, magnetized neutron stars. Having lost most or all of their hydrogen and helium envelope before explosion, Type Ib/c SNe are particularly amenable to SN-GRB associations. Asymmetries in line profiles and spectropolarimetry of Types II and Ib/c SNe, pulsar runaway velocities, soft γ-ray repeaters, and GRBs may be associated phenomena.

37 citations

01 Apr 2009
TL;DR: This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes, and finds upper limit estimates on the model-dependent isotropic GW emission energies between 3x10;{45} and 9x 10;{52} erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst.
Abstract: We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10;{45} and 9x10;{52} erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.

16 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Journal ArticleDOI
Fausto Acernese1, M. Agathos2, Kazuhiro Agatsuma2, D. Aisa3  +230 moreInstitutions (19)
TL;DR: Advanced Virgo as mentioned in this paper is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Abstract: Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network, alongside the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detection of gravitational waves and to opening a new window of observation on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.

3,004 citations

Journal ArticleDOI
TL;DR: In this article, the temporal evolution of the optical spectra of various types of supernovae (SNe) is illustrated, in part to aid observers classifying supernova candidates.
Abstract: The temporal evolution of the optical spectra of various types of supernovae (SNe) is illustrated, in part to aid observers classifying supernova candidates. Type II SNe are defined by the presence of hydrogen, and they exhibit a very wide variety of photometric and spectroscopic properties. Among hydrogen-deficient SNe (Type I), three subclasses are now known: those whose early-time spectra show strong Si II (Ia), prominent He I (Ib), or neither Si II nor He I (Ic). The late-time spectra of SNe Ia consist of a multitude of blended emission lines of iron-group elements; in sharp contrast, those of SNe Ib and SNe Ic (which are similar to each other) are dominated by several relatively unblended lines of intermediatemass elements. Although SNe Ia, which result from the thermonuclear runaway of white dwarfs, constitute a rather homogeneous subclass, important variations in their photometric and spectroscopic properties are undeniably present. SNe Ib/Ic probably result from core collapse in massive stars largely stripped of their hydrogen (Ib) and helium (Ic) envelopes, and hence they are physically related to SNe II. Indeed, the progenitors of some SNe II seem to have only a low-mass skin of hydrogen; their spectra gradually evolve to resemble those of SNe Ib. In addition to the two well-known photometric subclasses (linear and plateau) of SNe II, which may exhibit minor spectroscopic differences, there is a new subclass (SNe IIn) distinguished by relatively narrow emission lines with little or no P Cygni absorption component and slowly declining light curves. These objects probably have unusually dense circumstellar gas with which the ejecta interact.

1,649 citations

Journal ArticleDOI
TL;DR: A neutrino burst was observed in the Kamiokande II detector on 23 February, 7:35:35 UT (7.1 min) during a time interval of 13 sec as mentioned in this paper.
Abstract: A neutrino burst was observed in the Kamiokande II detector on 23 February, 7:35:35 UT (\ifmmode\pm\else\textpm\fi{}1 min) during a time interval of 13 sec. The signal consisted of 11 electron events of energy 7.5 to 36 MeV, of which the first two point back to the Large Magellanic Cloud with angles 18\ifmmode^\circ\else\textdegree\fi{}\ifmmode\pm\else\textpm\fi{}18\ifmmode^\circ\else\textdegree\fi{} and 15\ifmmode^\circ\else\textdegree\fi{}\ifmmode\pm\else\textpm\fi{}27\ifmmode^\circ\else\textdegree\fi{}.

1,502 citations

Journal ArticleDOI
TL;DR: A burst of eight neutrino events preceding the optical detection of the supernova in the Large Magellanic cloud has been observed in a large underground water Cherenkov detector.
Abstract: A burst of eight neutrino events a preceding the optical detection of the supernova in the Large Magellanic Cloud has been observed in a large underground water Cherenkov detector. The events span an interval of 6 s and have visible energies in the range 20-40 MeV.

1,369 citations