scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Octave spanning tunable frequency comb from a microresonator.

01 Aug 2011-Physical Review Letters (American Physical Society)-Vol. 107, Iss: 6, pp 063901
TL;DR: The generation of an octave-spanning optical frequency comb in a continuous wave laser pumped microresonator and continuous tunability of the generated frequency comb over more than an entire free spectral range is demonstrated.
Abstract: We report the generation of an octave-spanning optical frequency comb in a continuous wave laser pumped microresonator. The generated comb spectrum covers the wavelength range from 990 to 2170 nm without relying on additional external broadening. Continuous tunability of the generated frequency comb over more than an entire free spectral range is demonstrated. Moreover, the linewidth of individual optical comb components and its relation to the pump laser phase noise is studied. The ability to derive octave-spanning spectra from microresonator comb generators represents a key step towards f-2f self-referencing of microresonator-based optical frequency combs.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser, enabling ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers.
Abstract: Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation.

1,602 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and micro-resonators.
Abstract: This Review discusses the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and microresonators, as well as the applications of these combs in precision spectroscopy and direct frequency comb spectroscopy. Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.

1,161 citations

Journal ArticleDOI
10 Aug 2018-Science
TL;DR: The development of microresonator-generated frequency combs is reviewed to map out how understanding and control of their generation is providing a new basis for precision technology and establish a nascent research field at the interface of soliton physics, frequency metrology, and integrated photonics.
Abstract: The development of compact, chip-scale optical frequency comb sources (microcombs) based on parametric frequency conversion in microresonators has seen applications in terabit optical coherent communications, atomic clocks, ultrafast distance measurements, dual-comb spectroscopy, and the calibration of astophysical spectrometers and have enabled the creation of photonic-chip integrated frequency synthesizers. Underlying these recent advances has been the observation of temporal dissipative Kerr solitons in microresonators, which represent self-enforcing, stationary, and localized solutions of a damped, driven, and detuned nonlinear Schrodinger equation, which was first introduced to describe spatial self-organization phenomena. The generation of dissipative Kerr solitons provide a mechanism by which coherent optical combs with bandwidth exceeding one octave can be synthesized and have given rise to a host of phenomena, such as the Stokes soliton, soliton crystals, soliton switching, or dispersive waves. Soliton microcombs are compact, are compatible with wafer-scale processing, operate at low power, can operate with gigahertz to terahertz line spacing, and can enable the implementation of frequency combs in remote and mobile environments outside the laboratory environment, on Earth, airborne, or in outer space.

997 citations

Posted Content
TL;DR: In this article, the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators is described and analytical and numerical descriptions are presented that do not only reproduce qualitative features but can also be used to accurately model and predict the characteristics of experimental systems.
Abstract: This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this class of bright solitons are discussed. Moreover, analytical and numerical descriptions are presented that do not only reproduce qualitative features but can also be used to accurately model and predict the characteristics of experimental systems. Particular emphasis lies on temporal dissipative Kerr solitons with regard to optical frequency comb generation where they are of particular importance. Here, one example is spectral broadening and self-referencing enabled by the ultra-short pulsed nature of the solitons. Another example is dissipative Kerr soliton formation in integrated on-chip microresonators where the emission of a dispersive wave allows for the direct generation of unprecedentedly broadband and coherent soliton spectra with smooth spectral envelope.

754 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: Using a continuous wave–pumped, dispersion-engineered, integrated silicon nitride microresonator, the device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.
Abstract: Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.

711 citations

References
More filters
Journal ArticleDOI
14 Mar 2002-Nature
TL;DR: The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.
Abstract: Extremely narrow optical resonances in cold atoms or single trapped ions can be measured with high resolution. A laser locked to such a narrow optical resonance could serve as a highly stable oscillator for an all-optical atomic clock. However, until recently there was no reliable clockwork mechanism that could count optical frequencies of hundreds of terahertz. Techniques using femtosecond-laser frequency combs, developed within the past few years, have solved this problem. The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.

2,612 citations


"Octave spanning tunable frequency c..." refers background in this paper

  • ...Optical frequency combs[1, 2, 3] have revolutionized the field of frequency metrology within the...

    [...]

  • ...[3] Udem, T....

    [...]

Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: This work reports a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity.
Abstract: Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultraviolet, and can be used to link an unknown optical frequency to a radio or microwave frequency reference. Since their inception, frequency combs have triggered substantial advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation; subsequently, frequency combs have been generated using the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here we report a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain makes it possible to generate discrete comb modes over a 500-nm-wide span (approximately 70 THz) around 1,550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3 x 10(-18). In contrast to femtosecond mode-locked lasers, this work represents a step towards a monolithic optical frequency comb generator, allowing considerable reduction in size, complexity and power consumption. Moreover, the approach can operate at previously unattainable repetition rates, exceeding 100 GHz, which are useful in applications where access to individual comb modes is required, such as optical waveform synthesis, high capacity telecommunications or astrophysical spectrometer calibration.

1,950 citations


"Octave spanning tunable frequency c..." refers background or methods in this paper

  • ...Microresonator-combs[9] allow deriving an optical frequency comb directly from a continuous wave laser source and have been demonstrated in a number of optical microresonator...

    [...]

  • ...geometries[9, 10, 11, 12, 13, 14, 15]....

    [...]

  • ...In addition to fused silica microtoroids[9, 10], this method of comb generation has already been demonstrated in a variety of systems, including crystalline calcium fluoride resonators[11, 12], silicon nitride microresonators[14] as...

    [...]

  • ...In a first step, the continuous wave light of a pump laser at frequency νP is converted into signal νS and idler νI sidebands via degenerate fourwave mixing[9, 22, 23, 24] (cf....

    [...]

  • ...[9] Del’Haye, P....

    [...]

Journal ArticleDOI
TL;DR: The frequency comb generated by a femtosecond mode-locked laser is used and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region.
Abstract: We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5. 1x10(-16). This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

1,136 citations


"Octave spanning tunable frequency c..." refers background in this paper

  • ...Optical frequency combs[1, 2, 3] have revolutionized the field of frequency metrology within the...

    [...]

  • ...[1] Holzwarth, R....

    [...]

  • ...This renders spectral broadening using nonlinear fibres[1, 18] inefficient....

    [...]

Journal ArticleDOI
TL;DR: A great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard is demonstrated, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in Terms of the microwave frequency that controls the comb spacing.
Abstract: We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.

1,072 citations


"Octave spanning tunable frequency c..." refers background in this paper

  • ...[2] Diddams, S....

    [...]

  • ...Optical frequency combs[1, 2, 3] have revolutionized the field of frequency metrology within the...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the first monolithically integrated CMOS-compatible source by creating an optical parametric oscillator formed by a silicon nitride ring resonator on silicon.
Abstract: Silicon photonics enables the fabrication of on-chip, ultrahigh-bandwidth optical networks that are critical for the future of microelectronics1,2,3 Several optical components necessary for implementing a wavelength division multiplexing network have been demonstrated in silicon However, a fully integrated multiple-wavelength source capable of driving such a network has not yet been realized Optical amplification, a necessary component for lasing, has been achieved on-chip through stimulated Raman scattering4,5, parametric mixing6 and by silicon nanocrystals7 or nanopatterned silicon8 Losses in most of these structures have prevented oscillation Raman oscillators have been demonstrated9,10,11, but with a narrow gain bandwidth that is insufficient for wavelength division multiplexing Here, we demonstrate the first monolithically integrated CMOS-compatible source by creating an optical parametric oscillator formed by a silicon nitride ring resonator on silicon The device can generate more than 100 new wavelengths with operating powers below 50 mW This source can form the backbone of a high-bandwidth optical network on a microelectronic chip A monolithically integrated CMOS-compatible source is demonstrated using an optical parametric oscillator based on a silicon nitride ring resonator on silicon Generating more than 100 wavelengths simultaneously and operating at powers below 50 mW, scientists say that it may form the basis of an on-chip high-bandwidth optical network

1,052 citations