scispace - formally typeset

Journal ArticleDOI

OH-initiated heterogeneous oxidation of tris-2-butoxyethyl phosphate: implications for its fate in the atmosphere

19 Nov 2014-Atmospheric Chemistry and Physics (Copernicus GmbH)-Vol. 14, Iss: 22, pp 12195-12207

Abstract. A particle-phase relative rates technique is used to investigate the heterogeneous reaction between OH radicals and tris-2-butoxyethyl phosphate (TBEP) at 298 K by combining aerosol time-of-flight mass spectrometry (C-ToF-MS) data and positive matrix factor (PMF) analysis. The derived second-order rate constants (k2) for the heterogeneous loss of TBEP is (4.44 ± 0.45) × 10−12 cm3 molecule−1 s−1, from which an approximate particle-phase lifetime was estimated to be 2.6 (2.3–2.9) days. However, large differences in the rate constants for TBEP relative to a reference compound were observed when comparing internally and externally mixed TBEP/organic particles, and upon changes in the RH. The heterogeneous degradation of TBEP was found to be depressed or enhanced depending upon the particle mixing state and phase, highlighting the complexity of heterogeneous oxidation in the atmosphere. The effect of gas-particle partitioning on the estimated overall lifetime (gas + particle) for several organophosphate esters (OPEs) was also examined through the explicit modeling of this process. The overall atmospheric lifetimes of TBEP, tris-2-ethylhexyl phosphate (TEHP) and tris-1,3-dichloro-2-propyl phosphate (TDCPP) were estimated to be 1.9, 1.9 and 2.4 days respectively, and are highly dependent upon particle size. These results demonstrate that modeling the atmospheric fate of particle-phase toxic compounds for the purpose of risk assessment must include the gas-particle partitioning process, and in the future include the effect of other particulate components on the evaporation kinetics and/or the heterogeneous loss rates.

...read more

Content maybe subject to copyright    Report

Citations
More filters

01 Dec 2010
TL;DR: It is found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models.
Abstract: Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.

299 citations


Journal ArticleDOI
TL;DR: Experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces, which will help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.
Abstract: Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

68 citations


Journal ArticleDOI
TL;DR: It is revealed for the first time that water has a negative role in the ·OH-initiated degradation of TCPP by modifying the stabilities of prereactive complexes and transition states via forming hydrogen bonds, which unveils one underlying mechanism for the observed persistence ofTCP in the atmosphere.
Abstract: Tris(2-chloroisopropyl) phosphate (TCPP), a widely used organophosphate flame retardant, has been recognized as an important atmospheric pollutant. It is notable that TCPP has potential for long-range atmospheric transport. However, its atmospheric fate is unknown, restricting its environmental risk assessment. Herein we performed quantum chemical calculations to investigate the atmospheric transformation mechanisms and kinetics of TCPP initiated by ·OH in the presence of O2/NO/NO2, and the effects of ubiquitous water on these reactions. Results show the H-abstraction pathways are the most favorable for the titled reaction. The calculated gaseous rate constant and lifetime at 298 K are 1.7 × 10–10 cm3molecule–1 s–1 and 1.7 h, respectively. However, when considering atmospheric water, the corresponding lifetime is about 0.5–20.2 days. This study reveals for the first time that water has a negative role in the ·OH-initiated degradation of TCPP by modifying the stabilities of prereactive complexes and transi...

44 citations


Journal ArticleDOI
TL;DR: It is recommended that long-term monitoring programs targeting flame retardants (FRs) include urban sites, which provide an early indicator of effectiveness of control measures of targeted FRs, while at the same time providing information on emission sources and trends of replacement FR chemicals.
Abstract: Based on distinct land-use categories, a sampling campaign was carried out at eight locations across Toronto and the Greater Toronto Area in 2016-2017. Source sectors' dependent patterns of atmospheric concentrations of 9 organophosphate esters (OPEs), 9 polybrominated diphenyl ethers (PBDEs) and 5 novel flame retardants (NFRs) showed dominance of OPEs and PBDEs at highly commercialised urban and traffic sites, while NFRs, were dominant at residential sites. Overall, average concentrations of Sigma 9OPEs (1790 pg/m(3)) were two orders of magnitude higher than Sigma 9PBDEs (9.17 pg/m(3)) and Sigma(5)NFRs (8.14 pg/m(3)). The atmospheric concentrations of given chemical classes also showed a general trend of lower levels in winter as compared to summer months. Statistically significant negative correlations between the natural logarithm of concentrations and inverse of temperature for some OPEs and PBDEs highlighted the role of volatilization from local sources at given sites as primarily influencing their atmospheric concentrations. Overall, this study adds to the current knowledge of urban settings as a major emitter of the chemicals of emerging concern and their replacements, as well as the ongoing problem of phased out PBDEs due to their presence in existing inventories of commercial/recycled products. It is recommended that long-term monitoring programs targeting flame retardants (FRs) include urban sites, which provide an early indicator of effectiveness of control measures of targeted FRs, while at the same time providing information on emission sources and trends of replacement FR chemicals.

25 citations


Journal ArticleDOI
Abstract: Guaiacol (2-methoxyphenol) has a high emission rate from wood burning and mainly exists in the gas phase, but the formation potential of secondary organic aerosol (SOA) from the atmospheric oxidation of guaiacol has not been well determined yet. In this work, SOA formation from the gas-phase reaction of guaiacol with OH radicals was investigated using an oxidation flow reactor (OFR) under different experimental conditions. The results showed that SOA yield was dependent on guaiacol concentration, OH exposure, and the presence of SO2 and NO2. SOA yield firstly increased and then decreased as a function of OH exposure. The maximum SOA yield (0.28–0.54) obtained at different guaiacol concentrations could be well-expressed by a one-product model. The SOA oxidation degree was represented by the carbon oxidation state (OSC) and f44/f43 (the ratio of organic mass fractions of m/z 44 to m/z 43), which both increased linearly and significantly with the increase of OH exposure. In addition, SO2 and NO2 promoted SOA formation, for which the maximum yield enhancements were 13.38% and 10.69%, respectively. The N/C ratio (0.034–0.045) indicated that NO2 participated in the OH-initiated reaction of guaiacol, consequently resulting in the formation of organic nitrates. The experimental results would be helpful to further the understanding of SOA formation from the atmospheric oxidation of guaiacol and its subsequent impacts on air quality and climate.

20 citations


References
More filters

Journal ArticleDOI
Abstract: A new variant ‘PMF’ of factor analysis is described. It is assumed that X is a matrix of observed data and σ is the known matrix of standard deviations of elements of X. Both X and σ are of dimensions n × m. The method solves the bilinear matrix problem X = GF + E where G is the unknown left hand factor matrix (scores) of dimensions n × p, F is the unknown right hand factor matrix (loadings) of dimensions p × m, and E is the matrix of residuals. The problem is solved in the weighted least squares sense: G and F are determined so that the Frobenius norm of E divided (element-by-element) by σ is minimized. Furthermore, the solution is constrained so that all the elements of G and F are required to be non-negative. It is shown that the solutions by PMF are usually different from any solutions produced by the customary factor analysis (FA, i.e. principal component analysis (PCA) followed by rotations). Usually PMF produces a better fit to the data than FA. Also, the result of PF is guaranteed to be non-negative, while the result of FA often cannot be rotated so that all negative entries would be eliminated. Different possible application areas of the new method are briefly discussed. In environmental data, the error estimates of data can be widely varying and non-negativity is often an essential feature of the underlying models. Thus it is concluded that PMF is better suited than FA or PCA in many environmental applications. Examples of successful applications of PMF are shown in companion papers.

4,101 citations


"OH-initiated heterogeneous oxidatio..." refers background in this paper

  • ...05 (Paatero, 1997; Paatero and Tapper, 1994) to separate the signals of TBEP, CA, and their corresponding oxidation products....

    [...]


Journal ArticleDOI
11 Dec 2009-Science
TL;DR: A unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state is presented, which can serve as a basis for improving parameterizations in regional and global models.
Abstract: Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

2,694 citations


Additional excerpts

  • ...…of mixing state on TBEP oxidation (Exp. III)10 in the ambient atmosphere, particles are often internally or externally mixed with other components (Jimenez et al., 2009), and it is well recognized that the mixing state or morphology of particles plays an important role in heterogeneous reaction…...

    [...]


Journal ArticleDOI
Abstract: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.

2,630 citations


Journal ArticleDOI
TL;DR: The current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health are outlined.
Abstract: Aerosols are of central importance for atmospheric chemistry and physics, the biosphere, climate, and public health. The airborne solid and liquid particles in the nanometer to micrometer size range influence the energy balance of the Earth, the hydrological cycle, atmospheric circulation, and the abundance of greenhouse and reactive trace gases. Moreover, they play important roles in the reproduction of biological organisms and can cause or enhance diseases. The primary parameters that determine the environmental and health effects of aerosol particles are their concentration, size, structure, and chemical composition. These parameters, however, are spatially and temporally highly variable. The quantification and identification of biological particles and carbonaceous components of fine particulate matter in the air (organic compounds and black or elemental carbon, respectively) represent demanding analytical challenges. This Review outlines the current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health.

1,623 citations


Additional excerpts

  • ...The effects of fine particles on the atmosphere, climate, and public health are among the central topics in current environmental research (Pöschl, 2005)....

    [...]

  • ...These effects are closely related to the particle size, morphology, and composition (Pöschl, 2005; Kolb25 and Worsnop, 2012)....

    [...]


Journal ArticleDOI
Abstract: Positive matrix factorization (PMF) is a recently published factor analytic technique where the left and right factor matrices (corresponding to scores and loadings) are constrained to non-negative values. The PMF model is a weighted least squares fit, weights based on the known standard deviations of the elements of the data matrix. The following aspects of PMF are discussed in this work: (1) Robust factorization (based on the Huber influence function) is achieved by iterative reweighting of individual data values. This appears especially useful if individual data values may be in error. (2) Desired rotations may be obtained automatically with the help of suitably chosen regularization terms. (3) The algorithms for PMF are discussed. A synthetic spectroscopic example is shown, demonstrating both the robust processing and the automatic rotations.

1,591 citations


"OH-initiated heterogeneous oxidatio..." refers background in this paper

  • ...05 (Paatero, 1997; Paatero and Tapper, 1994) to separate the signals of TBEP, CA, and their corresponding oxidation products....

    [...]