scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.CELREP.2021.108760

Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling.

02 Mar 2021-Cell Reports (Cell Press)-Vol. 34, Iss: 9, pp 108760-108760
Abstract: Summary Stromal-interaction molecules (STIM1/2) sense endoplasmic reticulum (ER) Ca2+ depletion and activate Orai channels. However, the choreography of interactions between native STIM/Orai proteins under physiological agonist stimulation is unknown. We show that the five STIM1/2 and Orai1/2/3 proteins are non-redundant and function together to ensure the graded diversity of mammalian Ca2+ signaling. Physiological Ca2+ signaling requires functional interactions between STIM1/2, Orai1/2/3, and IP3Rs, ensuring that receptor-mediated Ca2+ release is tailored to Ca2+ entry and nuclear factor of activated T cells (NFAT) activation. The N-terminal Ca2+-binding ER-luminal domains of unactivated STIM1/2 inhibit IP3R-evoked Ca2+ release. A gradual increase in agonist intensity and STIM1/2 activation relieves IP3R inhibition. Concomitantly, activated STIM1/2 C termini differentially interact with Orai1/2/3 as agonist intensity increases. Thus, coordinated and omnitemporal functions of all five STIM/Orai and IP3Rs translate the strength of agonist stimulation to precise levels of Ca2+ signaling and NFAT induction, ensuring the fidelity of complex mammalian Ca2+ signaling.

... read more

Topics: ORAI1 (63%), NFAT (54%), Calcium signaling (52%) ... show more
Citations
  More

12 results found


Open accessJournal ArticleDOI: 10.3390/IJMS22189821
Sharon Negri1, Pawan Faris1, Francesco Moccia1Institutions (1)
Abstract: An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.3389/FIMMU.2021.659790
Abstract: Ca2+ signaling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains characterized by reduced spatial and temporal extents are observed in the junctions between the plasma membrane (PM) and the endoplasmic reticulum (ER). Such Ca2+ responses can also occur in response to T cell adhesion to other cells or extracellular matrix proteins in otherwise unstimulated T cells. These non-TCR/CD3-dependent Ca2+ microdomains rely on d-myo-inositol 1,4,5-trisphosphate (IP3) signaling and subsequent store operated Ca2+ entry (SOCE) via the ORAI/STIM system. The detailed molecular mechanism of adhesion-dependent Ca2+ microdomain formation remains to be fully elucidated. We used mathematical modeling to investigate the spatiotemporal characteristics of T cell Ca2+ microdomains and their molecular regulators. We developed a reaction-diffusion model using COMSOL Multiphysics to describe the evolution of cytosolic and ER Ca2+ concentrations in a three-dimensional ER-PM junction. Equations are based on a previously proposed realistic description of the junction, which is extended to take into account IP3 receptors (IP3R) that are located next to the junction. The first model only considered the ORAI channels and the SERCA pumps. Taking into account the existence of preformed clusters of ORAI1 and STIM2, ORAI1 slightly opens in conditions of a full ER. These simulated Ca2+ microdomains are too small as compared to those observed in unstimulated T cells. When considering the opening of the IP3Rs located near the junction, the local depletion of ER Ca2+ allows for larger Ca2+ fluxes through the ORAI1 channels and hence larger local Ca2+ concentrations. Computational results moreover show that Ca2+ diffusion in the ER has a major impact on the Ca2+ changes in the junction, by affecting the local Ca2+ gradients in the sub-PM ER. Besides pointing out the likely involvement of the spontaneous openings of IP3Rs in the activation of SOCE in conditions of T cell adhesion prior to full activation, the model provides a tool to investigate how Ca2+ microdomains extent and interact in response to T cell receptor activation.

... read more

Topics: STIM2 (58%), ORAI1 (53%), Lipid microdomain (52%) ... show more

2 Citations


Open accessJournal ArticleDOI: 10.1016/J.XPRO.2021.100618
Vikas Arige1, Scott M. Emrich2, Ryan E. Yoast2, Mohamed Trebak2  +1 moreInstitutions (2)
17 Jun 2021-
Abstract: Summary This protocol outlines steps to visualize and detect Ca2+ puffs following photo-liberation of caged inositol-1,4,5-trisphosphate (IP3) from HEK-293 cells expressing only the native IP3R type 1 receptor using total internal reflection fluorescence (TIRF) microscopy. TIRF microscopy offers high axial resolution and allows imaging at high speed, with a higher signal-to-background ratio. Additionally, we shed light on commonly encountered pitfalls, which should be considered while recording Ca2+ puffs using TIRF microscopy. For complete details on the use and execution of this protocol, please refer to Emrich et al. (2021) and Lock et al. (2015a) .

... read more

Topics: Microscopy (50%)

1 Citations


Open accessJournal ArticleDOI: 10.1016/J.JBC.2021.101174
Ryan E. Yoast1, Scott M. Emrich1, Xuexin Zhang1, Ping Xin1  +17 moreInstitutions (6)
Abstract: Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C-coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release-activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol-mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.

... read more

Topics: Inositol trisphosphate receptor (56%), Calcium signaling (55%), Uniporter (54%) ... show more

1 Citations


Open accessJournal ArticleDOI: 10.1242/JCS.258875
Vikas Arige1, Lara E. Terry1, Sundeep Malik1, Taylor R. Knebel1  +2 moreInstitutions (1)
Abstract: Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.

... read more

Topics: CREB (67%), Protein kinase A (55%), Phosphorylation (50%)

References
  More

62 results found


Open accessJournal ArticleDOI: 10.1038/NMETH.2089
01 Jul 2012-Nature Methods
Abstract: For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.

... read more

Topics: Image processing (54%), Bioimage informatics (52%)

34,063 Citations


Journal ArticleDOI: 10.1038/NATURE04702
Stefan Feske1, Yousang Gwack1, Murali Prakriya2, Sonal Srikanth1  +7 moreInstitutions (4)
11 May 2006-Nature
Abstract: Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (I(CRAC)). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.

... read more

Topics: NFAT (58%), Store-operated calcium entry (54%), Severe combined immunodeficiency (53%) ... show more

1,989 Citations


Open accessJournal ArticleDOI: 10.1016/J.CUB.2005.05.055
Jen Liou1, Man Lyang Kim1, Won Do Heo1, Joshua T. Jones1  +3 moreInstitutions (1)
12 Jul 2005-Current Biology
Abstract: Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.

... read more

Topics: ORAI2 Protein (55%), Store-operated calcium entry (54%), STIM1 (53%) ... show more

1,854 Citations


Journal ArticleDOI: 10.1038/355353A0
Markus Hoth1, Reinhold Penner1Institutions (1)
23 Jan 1992-Nature
Abstract: In many cell types, receptor-mediated Ca2+ release from internal stores is followed by Ca2+ influx across the plasma membrane. The sustained entry of Ca2+ is thought to result partly from the depletion of intracellular Ca2+ pools. Most investigations have characterized Ca2+ influx indirectly by measuring Ca(2+)-activated currents or using Fura-2 quenching by Mn2+, which in some cells enters the cells by the same influx pathway. But only a few studies have investigated this Ca2+ entry pathway more directly. We have combined patch-clamp and Fura-2 measurements to monitor membrane currents in mast cells under conditions where intracellular Ca2+ stores were emptied by either inositol 1,4,5-trisphosphate, ionomycin, or excess of the Ca2+ chelator EGTA. The depletion of Ca2+ pools by these independent mechanisms commonly induced activation of a sustained calcium inward current that was highly selective for Ca2+ ions over Ba2+, Sr2+ and Mn2+. This Ca2+ current, which we term ICRAC (calcium release-activated calcium), is not voltage-activated and shows a characteristic inward rectification. It may be the mechanism by which electrically nonexcitable cells maintain raised intracellular Ca2+ concentrations and replenish their empty Ca2+ stores after receptor stimulation.

... read more

Topics: Store-operated calcium entry (62%), ORAI2 Protein (61%), SOC channels (58%) ... show more

1,699 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2009.02.014
06 Mar 2009-Cell
Abstract: Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.

... read more

Topics: Store-operated calcium entry (55%), ORAI1 (52%), STIM1 (51%) ... show more

824 Citations