scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On a Bernoulli problem with geometric constraints

01 Jan 2012-ESAIM: Control, Optimisation and Calculus of Variations (EDP-Sciences)-Vol. 18, Iss: 1, pp 157-180
TL;DR: In this paper, a Bernoulli free boundary problem with geometrical constraints is studied, where the domain Ω is constrained to lie in the half space determined by x 1 ≥ 0 and its boundary to contain a segment of the hyperplane {x 1 = 0 } where non-homogeneous Dirichlet conditions are imposed.
Abstract: A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane {x1 =0 } where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed and this paper is devoted first to the study of geometric and asymptotic properties of the solution and then to the numerical treatment of the problem using a shape optimization formulation. The major difficulty and originality of this paper lies in the treatment of the geometric constraints.

Content maybe subject to copyright    Report

Citations
More filters
DissertationDOI
10 Mar 2015
TL;DR: In this article, a generalization of the celebrated Theorem of Correa-Seeger for the special class of Lagrangian functions is presented, which simplifies the derivation of necessary optimality conditions for PDE constrained optimization problems.
Abstract: This thesis is concerned with shape optimization problems under non-linear PDE (partial differential equation) constraints. We give a brief introduction to shape optimization and recall important concepts such as shape continuity, shape derivative and the shape differentiability. In order to review existing methods for proving the shape differentiability of PDE constrained shape functions a simple semi-linear model problem is used as constraint. With this example we illustrate the conceptual limits of each method. In the main part of this thesis a new theorem on the differentiability of a minimax function is proved. This fundamental result simplifies the derivation of necessary optimality conditions for PDE constrained optimization problems. It represents a generalization of the celebrated Theorem of Correa-Seeger for the special class of Lagrangian functions and removes the saddle point assumption. Although our method can also be used to compute sensitivities in optimal control, we mainly focus on shape optimization problems. In this respect, we apply the result to four model problems: (i) a semi-linear problem, (ii) an electrical impedance tomography problem, (iii) a model for distortion compensation in elasticity, and finally (iv) a quasi-linear problem describing electro-magnetic fields. Next, we concentrate on methods to minimise shape functions. For this we recall several procedures to put a manifold structure on the space of shapes. Usually, the boundary expression of the shape derivative is used for numerical algorithms. From the numerical point of view this expression has several disadvantages, which will be explained in more detail. In contrast, the volume expression constitutes a numerically more accurate representation of the shape derivative. Additionally, this expression allows us to look at gradient algorithms from two perspectives: the Eulerian and Lagrangian points of view. In the Eulerian approach all computations are performed on the current moving domain. On the other hand the Lagrangian approach allows to perform all calculations on a fixed domain. The Lagrangian view naturally leads to a gradient flow interpretation. The gradient flow depends on the chosen metrics of the underlying function space. We show how different metrics may lead to different optimal designs and different regularity of the resulting domains. In the last part, we give numerical examples using the gradient flow interpretation of the Lagrangian approach. In order to solve the severely ill-posed electrical impedance tomography problem (ii), the discretised gradient flow will be combined with a level-set method. Finally, the problem from example (iv) is solved using B-Splines instead of levelsets.

23 citations

Journal ArticleDOI
TL;DR: This paper examines the usefulness of kernel reproducing Hilbert spaces for PDE-constrained shape optimization problems and shows that radial kernels provide convenient formulas for the shape gradient that can be efficiently used in numerical simulations.
Abstract: In this paper we investigate and compare different gradient algorithms designed for the domain expression of the shape derivative. Our main focus is to examine the usefulness of kernel reproducing ...

15 citations

Journal ArticleDOI
TL;DR: In this paper, two inverse problems related to the tokamak \textsl{Tore Supra} through the study of the magnetostatic equation for the poloidal flux are considered.
Abstract: We consider two inverse problems related to the tokamak \textsl{Tore Supra} through the study of the magnetostatic equation for the poloidal flux. The first one deals with the Cauchy issue of recovering in a two dimensional annular domain boundary magnetic values on the inner boundary, namely the limiter, from available overdetermined data on the outer boundary. Using tools from complex analysis and properties of genereralized Hardy spaces, we establish stability and existence properties. Secondly the inverse problem of recovering the shape of the plasma is addressed thank tools of shape optimization. Again results about existence and optimality are provided. They give rise to a fast algorithm of identification which is applied to several numerical simulations computing good results either for the classical harmonic case or for the data coming from \textsl{Tore Supra}.

15 citations

Journal ArticleDOI
TL;DR: The exterior Bernoulli problem is rephrased into a shape optimization problem using a new type of objective function called the Dirichlet-data-gap cost function which measures the distance between theDirichlet data of two state functions.
Abstract: The exterior Bernoulli problem is rephrased into a shape optimization problem using a new type of objective function called the Dirichlet-data-gap cost function which measures the $$L^2$$ -distance between the Dirichlet data of two state functions The first-order shape derivative of the cost function is explicitly determined via the chain rule approach Using the same technique, the second-order shape derivative of the cost function at the solution of the free boundary problem is also computed The gradient and Hessian informations are then used to formulate an efficient second-order gradient-based descent algorithm to numerically solve the minimization problem The feasibility of the proposed method is illustrated through various numerical examples

10 citations

Journal ArticleDOI
TL;DR: In this paper, an overdetermined problem of Serrin-type with respect to an operator in divergence form with piecewise constant coefficients is considered and sufficient conditions for unique solvability near radially symmetric configurations are given by means of a perturbation argument relying on shape derivatives and the implicit function theorem.
Abstract: We consider an overdetermined problem of Serrin-type with respect to an operator in divergence form with piecewise constant coefficients. We give sufficient condition for unique solvability near radially symmetric configurations by means of a perturbation argument relying on shape derivatives and the implicit function theorem. This problem is also treated numerically, by means of a steepest descent algorithm based on a Kohn-Vogelius functional.

7 citations

References
More filters
Book
01 Jan 1941
TL;DR: In this paper, the authors present a theory for linear PDEs: Sobolev spaces Second-order elliptic equations Linear evolution equations, Hamilton-Jacobi equations and systems of conservation laws.
Abstract: Introduction Part I: Representation formulas for solutions: Four important linear partial differential equations Nonlinear first-order PDE Other ways to represent solutions Part II: Theory for linear partial differential equations: Sobolev spaces Second-order elliptic equations Linear evolution equations Part III: Theory for nonlinear partial differential equations: The calculus of variations Nonvariational techniques Hamilton-Jacobi equations Systems of conservation laws Appendices Bibliography Index.

25,734 citations

Book
01 Nov 2008
TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Abstract: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

17,420 citations

Book
01 Apr 1985
TL;DR: Second-order boundary value problems in polygons have been studied in this article for convex domains, where the second order boundary value problem can be solved in the Sobolev spaces of Holder functions.
Abstract: Foreword Preface 1. Sobolev spaces 2. Regular second-order elliptic boundary value problems 3. Second-order elliptic boundary value problems in convex domains 4. Second-order boundary value problems in polygons 5. More singular solutions 6. Results in spaces of Holder functions 7. A model fourth-order problem 8. Miscellaneous Bibliography Index.

5,248 citations

Book
01 Jan 1987
TL;DR: Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke& Jeeves, implicit filtering, MDS, and Nelder& Mead schemes in a unified way.
Abstract: This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke& Jeeves, implicit filtering, MDS, and Nelder& Mead schemes in a unified way.

1,980 citations