scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On-chip photonic synapse

01 Sep 2017-Science Advances (American Association for the Advancement of Science)-Vol. 3, Iss: 9
TL;DR: This work reports the development of a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.
Abstract: The search for new “neuromorphic computing” architectures that mimic the brain’s approach to simultaneous processing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essential step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses phase-change materials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the synaptic weight simply by varying the number of optical pulses sent down the waveguide, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.
Citations
More filters
Journal ArticleDOI
08 May 2019-Nature
TL;DR: An optical version of a brain-inspired neurosynaptic system, using wavelength division multiplexing techniques, is presented that is capable of supervised and unsupervised learning.
Abstract: Software implementations of brain-inspired computing underlie many important computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, unlike real neural tissue, traditional computing architectures physically separate the core computing functions of memory and processing, making fast, efficient and low-energy computing difficult to achieve. To overcome such limitations, an attractive alternative is to design hardware that mimics neurons and synapses. Such hardware, when connected in networks or neuromorphic systems, processes information in a way more analogous to brains. Here we present an all-optical version of such a neurosynaptic system, capable of supervised and unsupervised learning. We exploit wavelength division multiplexing techniques to implement a scalable circuit architecture for photonic neural networks, successfully demonstrating pattern recognition directly in the optical domain. Such photonic neurosynaptic networks promise access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data. An optical version of a brain-inspired neurosynaptic system, using wavelength division multiplexing techniques, is presented that is capable of supervised and unsupervised learning.

862 citations

Journal ArticleDOI
TL;DR: A simple two-terminal optoelectronic resistive random access memory (ORRAM) synaptic devices for an efficient neuromorphic visual system that exhibit non-volatile optical resistive switching and light-tunable synaptic behaviours.
Abstract: Neuromorphic visual systems have considerable potential to emulate basic functions of the human visual system even beyond the visible light region. However, the complex circuitry of artificial visual systems based on conventional image sensors, memory and processing units presents serious challenges in terms of device integration and power consumption. Here we show simple two-terminal optoelectronic resistive random access memory (ORRAM) synaptic devices for an efficient neuromorphic visual system that exhibit non-volatile optical resistive switching and light-tunable synaptic behaviours. The ORRAM arrays enable image sensing and memory functions as well as neuromorphic visual pre-processing with an improved processing efficiency and image recognition rate in the subsequent processing tasks. The proof-of-concept device provides the potential to simplify the circuitry of a neuromorphic visual system and contribute to the development of applications in edge computing and the internet of things.

594 citations

Journal ArticleDOI
TL;DR: The maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfiguration similar to electronic devices.
Abstract: Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics. This Review discusses recent advances of microwave photonic technologies and their applications in communications and information processing, as well as their potential implementations in quantum and neuromorphic photonics.

532 citations

Journal ArticleDOI
TL;DR: This Review focuses on the crystallization mechanisms of PCMs as well as the design principles to achieve PCMs with high switching speeds and good data retention, which will aid the development of PCM-based universal memory and neuro-inspired devices.
Abstract: The global demand for data storage and processing has increased exponentially in recent decades. To respond to this demand, research efforts have been devoted to the development of non-volatile memory and neuro-inspired computing technologies. Chalcogenide phase-change materials (PCMs) are leading candidates for such applications, and they have become technologically mature with recently released competitive products. In this Review, we focus on the mechanisms of the crystallization dynamics of PCMs by discussing structural and kinetic experiments, as well as ab initio atomistic modelling and materials design. Based on the knowledge at the atomistic level, we depict routes to improve the parameters of phase-change devices for universal memory. Moreover, we discuss the role of crystallization in enabling neuro-inspired computing using PCMs. Finally, we present an outlook for future opportunities of PCMs, including all-photonic memories and processors, flexible displays with nanopixel resolution and nanoscale switches and controllers. Chalcogenide phase-change materials (PCMs) are leading candidates for non-volatile memory and neuro-inspired computing devices. This Review focuses on the crystallization mechanisms of PCMs as well as the design principles to achieve PCMs with high switching speeds and good data retention, which will aid the development of PCM-based universal memory and neuro-inspired devices.

508 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
Abstract: Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges. Photonics offers an attractive platform for implementing neuromorphic computing due to its low latency, multiplexing capabilities and integrated on-chip technology.

480 citations

References
More filters
Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

14,377 citations

Journal ArticleDOI
TL;DR: The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Abstract: In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.

4,382 citations


"On-chip photonic synapse" refers background in this paper

  • ...By further pulse control, and/or by increasing the signal-to-noise ratio [for example, by increasing the readout power (23)] and/or by further device optimization, it will be possible to access considerably more synaptic weighting levels or even achieve continuous weighting to mimic the true analog nature of synaptic weight change in biological systems (28)....

    [...]

Journal ArticleDOI
TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Abstract: A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of complementary metal−oxide semiconductor neurons and memristor synapses can support important synaptic functions such as spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity and high density required for efficient computing.

3,650 citations


"On-chip photonic synapse" refers background in this paper

  • ...Several electronic devices have recently been investigated to achieve synaptic function, such as those based on electrically induced resistive changes in phase-change chalcogenides (11–13), metal-insulator-metal structures (14, 15), and ferroelectricmaterials (16), as well as nanomaterialbased field-effect transistors (17, 18)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a rapid and reversible transition between a highly resistive and a conductive state effected by an electric field was described in various types of disordered materials, particularly amorphous semiconductors covering a wide range of compositions.
Abstract: We describe here a rapid and reversible transition between a highly resistive and a conductive state effected by an electric field which we have observed in various types of disordered materials, particularly amorphous semiconductors1,2 covering a wide range of compositions. These include oxide- and boron-based glasses and materials which contain the elements tellurium and/or arsenic combined with other elements such as those of groups III, IV, and VI.

2,997 citations

Journal ArticleDOI
TL;DR: This review looks at the unique property combination that characterizes phase-change materials, in particular the contrast between the amorphous and crystalline states, and the origin of the fast crystallization kinetics.
Abstract: Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.

2,985 citations