scispace - formally typeset
Open AccessJournal ArticleDOI

On Cooperative Relaying Schemes for Wireless Physical Layer Security

Reads0
Chats0
TLDR
A cooperative wireless network in the presence of one or more eavesdroppers, and node cooperation for achieving physical (PHY) layer based security is considered, and an analytical solution is obtained for the DF scheme with a single eavesdropper and the multivariate problem is reduced to a problem of one variable.
Abstract
We consider a cooperative wireless network in the presence of one or more eavesdroppers, and exploit node cooperation for achieving physical (PHY) layer based security. Two different cooperation schemes are considered. In the first scheme, cooperating nodes retransmit a weighted version of the source signal in a decode-and-forward (DF) fashion. In the second scheme, referred to as cooperative jamming (CJ), while the source is transmitting, cooperating nodes transmit weighted noise to confound the eavesdropper. We investigate two objectives: i) maximization of the achievable secrecy rate subject to a total power constraint and ii) minimization of the total power transmit power under a secrecy rate constraint. For the first design objective, we obtain the exact solution for the DF scheme for the case of a single or multiple eavasdroppers, while for the CJ scheme with a single eavesdropper we reduce the multivariate problem to a problem of one variable. For the second design objective, existing work introduces additional constraints in order to reduce the degree of difficulty, thus resulting in suboptimal solutions. Our work raises those constraints, and obtains either an analytical solution for the DF scheme with a single eavesdropper, or reduces the multivariate problem to a problem of one variable for the CJ scheme with a single eavesdropper. Numerical results are presented to illustrate the proposed results and compare them to existing work.

read more

Citations
More filters
Journal ArticleDOI

Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

TL;DR: A comprehensive review of the domain of physical layer security in multiuser wireless networks, with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security and observations on potential research directions in this area.
Book ChapterDOI

Nonlinear Fractional Programming

TL;DR: In this paper, a nonlinear fractional programming problem is considered, where the objective function has a finite optimal value and it is assumed that g(x) + β + 0 for all x ∈ S,S is non-empty.
Journal ArticleDOI

Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges

TL;DR: This paper identifies and provides a detailed description of various potential emerging technologies for the fifth generation communications with SWIPT/WPT and provides some interesting research challenges and recommendations with the objective of stimulating future research in this emerging domain.
Journal ArticleDOI

Robust and Secure Wireless Communications via Intelligent Reflecting Surfaces

TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Journal ArticleDOI

Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

TL;DR: A comprehensive review of the physical layer security in multiuser wireless networks can be found in this article, where the authors provide an overview of the foundations dating back to Shannon and Wyner on information-theoretic security.
References
More filters
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Journal ArticleDOI

Communication theory of secrecy systems

TL;DR: A theory of secrecy systems is developed on a theoretical level and is intended to complement the treatment found in standard works on cryptography.
Journal ArticleDOI

The wire-tap channel

TL;DR: This paper finds the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission, and implies that there exists a Cs > 0, such that reliable transmission at rates up to Cs is possible in approximately perfect secrecy.
Book

Matrix Analysis and Applied Linear Algebra

TL;DR: The author presents Perron-Frobenius theory of nonnegative matrices Index, a theory of matrices that combines linear equations, vector spaces, and matrix algebra with insights into eigenvalues and Eigenvectors.
Journal ArticleDOI

On Nonlinear Fractional Programming

TL;DR: In this paper, an algorithm for fractional programming with nonlinear as well as linear terms in the numerator and denominator is presented. But the algorithm is based on a theorem by Jagannathan Jagannathy, R. 1966.
Related Papers (5)