scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

On-demand multicast routing protocol

21 Sep 1999-Vol. 3, pp 1298-1302
TL;DR: The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding).
Abstract: This paper presents a novel multicast routing protocol for mobile ad hoc wireless networks. The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding). It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP's scalability and performance via simulation.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper analytically prove several important properties of LMST: 1) the topology derived under LMST preserves the network connectivity; 2) the node degree of any node in the resulting topology is bounded by 6; and 3) the bottomology can be transformed into one with bidirectional links after removal of all unidirectional Links.
Abstract: In this paper, we present a minimum spanning tree (MST) based topology control algorithm, called local minimum spanning tree (LMST), for wireless multi-hop networks. In this algorithm, each node builds its local minimum spanning tree independently and only keeps on-tree nodes that are one-hop away as its neighbors in the final topology. We analytically prove several important properties of LMST: (1) the topology derived under LMST preserves the network connectivity; (2) the node degree of any node in the resulting topology is bounded by 6; and (3) the topology can be transformed into one with bidirectional links (without impairing the network connectivity) after removal of all uni-directional links. These results are corroborated in the simulation study.

827 citations


Cites background from "On-demand multicast routing protoco..."

  • ...Several broadcast/multicast algorithms for ad-hoc wireless networks ( [10] [11] [12] [13] [14]) have also attempted to maintain some type of overlay topology, upon which a multicast tree/mesh can be built....

    [...]

Journal ArticleDOI
TL;DR: On-Demand Multicast Routing Protocol (ODMRP) is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained.
Abstract: An ad hoc network is a dynamically reconfigurable wireless network with no fixed infrastructure or central administration. Each host is mobile and must act as a router. Routing and multicasting protocols in ad hoc networks are faced with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. This paper presents the On-Demand Multicast Routing Protocol (ODMRP) for wireless mobile and hoc networks. ODMRP is a mesh-based, rather than a conventional tree-based, multicast scheme and uses a forwarding group concept; only a subset of nodes forwards the multicast packets via scoped flooding. It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP performance with other multicast protocols proposed for ad hoc networks via extensive and detailed simulation.

779 citations


Cites background from "On-demand multicast routing protoco..."

  • ...Keywords: multicast, routing, ad hoc networks, mobile computing...

    [...]

Proceedings ArticleDOI
23 Sep 2000
TL;DR: This work proposes a scheme to improve existing on-demand routing protocols by creating a mesh and providing multiple alternate routes to the Ad-hoc On-Demand Distance Vector protocol and evaluates the performance improvements by simulation.
Abstract: Nodes in mobile ad hoc networks communicate with one another via packet radios on wireless multihop links. Because of node mobility and power limitations, the network topology changes frequently. Routing protocols therefore play an important role in mobile multihop network communications. A trend in ad hoc network routing is the reactive on-demand philosophy where routes are established only when required. Most of the protocols in this category, however, use a single route and do not utilize multiple alternate paths. We propose a scheme to improve existing on-demand routing protocols by creating a mesh and providing multiple alternate routes. Our algorithm establishes the mesh and multipaths without transmitting any extra control message. We apply our scheme to the Ad-hoc On-Demand Distance Vector (AODV) protocol and evaluate the performance improvements by simulation.

711 citations

Proceedings ArticleDOI
28 Sep 2002
TL;DR: It is shown through simulation and experimentation that PSFQ can out perform existing related techniques and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.
Abstract: We propose PSFQ (Pump Slowly, Fetch Quickly), a reliable transport protocol suitable for a new class of reliable data applications emerging in wireless sensor networks. For example, currently sensor networks tend to be application specific and are typically hard-wired to perform a specific task efficiently at low cost; however, there is an emerging need to be able to re-task or reprogram groups of sensors in wireless sensor networks on the fly (e.g., during disaster recovery). Due to the application-specific nature of sensor networks, it is difficult to design a single monolithic transport system that can be optimized for every application. PSFQ takes a different approach and supports a simple, robust and scalable transport that is customizable to meet the needs of different reliable data applications. To our knowledge there has been little or no work on the design of an efficient reliable transport protocol for wireless sensor networks, even though some techniques found in IP networks have some relevance to the solution space, such as, the body of work on reliable multicast. We present the design and implementation of PSFQ, and evaluate the protocol using the ns-2 simulator and an experimental wireless sensor testbed based on Berkeley motes. We show through simulation and experimentation that PSFQ can out perform existing related techniques (e.g., an idealized SRM scheme) and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.

705 citations

Journal ArticleDOI
TL;DR: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks, which generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees.
Abstract: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks. CAMP generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees. A shared multicast mesh is defined for each multicast group; the main goal of using such meshes is to maintain the connectivity of multicast groups even while network routers move frequently, CAMP consists of the maintenance of multicast meshes and loop-free packet forwarding over such meshes. Within the multicast mesh of a group, packets from any source in the group are forwarded along the reverse shortest path to the source, just as in traditional multicast protocols based on source-based trees. CAMP guarantees that within a finite time, every receiver of a multicast group has a reverse shortest path to each source of the multicast group. Multicast packets for a group are forwarded along the shortest paths front sources to receivers defined within the group's mesh. CAMP uses cores only to limit the traffic needed for a router to join a multicast group; the failure of cores does not stop packet forwarding or the process of maintaining the multicast meshes.

680 citations


Cites background or methods from "On-demand multicast routing protoco..."

  • ...The Forwarding Group Multicast Protocol (FGMP) [3] and the On-demand Multicast Routing Protocol [13] also build a vari ation of meshes....

    [...]

  • ...Although CAMP and ODMRP [13] use a different mesh approach, they share some common features....

    [...]

  • ...Also impleme nted was the On-demand Multicast Routing Protocol [13]....

    [...]

  • ...Although the draft specification avail ble for ODMRP [13] requires this timer to be set to 400 msecs and does n t clearly indicate a way to compute this timer for different ne work sizes and capacities, the update timers for both protocols are set to three seconds....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"On-demand multicast routing protoco..." refers background or methods in this paper

  • ...A free space propagation model [16] with a threshold cutoff is used in our experiments....

    [...]

  • ...If the capture ratio (the minimum ratio of an arriving packet’s signal strength relative to those of other colliding packets) [16] is greater than the predefined threshold value, the arriving packet is received while other interfering packets are dropped....

    [...]

01 Jan 1994
TL;DR: In this article, the authors present a protocol for routing in ad hoc networks that uses dynamic source routing, which adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,614 citations

Book ChapterDOI
01 Jan 1996
TL;DR: This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing that adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,256 citations


"On-demand multicast routing protoco..." refers methods in this paper

  • ...Random waypoint [13] is used as the mobility model....

    [...]

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"On-demand multicast routing protoco..." refers background in this paper

  • ...This performance degradation with speed increase also occurs in other unicast routing algorithms (see [4], [12])....

    [...]

Journal ArticleDOI
TL;DR: WRP reduces the number of cases in which a temporary routing loop can occur, which accounts for its fast convergence properties and its performance is compared by simulation with the performance of the distributed Bellman-Ford Algorithm, DUAL, and an Ideal Link-state Algorithm.
Abstract: We present the Wireless Routing Protocol (WRP). In WRP, routing nodes communicate the distance and second-to-last hop for each destination. WRP reduces the number of cases in which a temporary routing loop can occur, which accounts for its fast convergence properties. A detailed proof of correctness is presented and its performance is compared by simulation with the performance of the distributed Bellman-Ford Algorithm (DBF), DUAL (a loop-free distance-vector algorithm) and an Ideal Link-state Algorithm (ILS), which represent the state of the art of internet routing. The simulation results indicate that WRP is the most efficient of the alternatives analyzed.

1,452 citations