scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On-demand semiconductor single-photon source with near-unity indistinguishability

TL;DR: Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing and is generated from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses.
Abstract: Pulse-excited resonance-fluorescence single-photons are generated on demand from a single quantum dot embedded in a microcavity under s-shell excitation with an ultrafast laser source.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions, including photophysical properties of singlephoton emissions and efforts towards scalable system integration.
Abstract: This Review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions. The photophysical properties of single-photon emitters and efforts towards scalable system integration are also discussed.

1,387 citations

Journal ArticleDOI
TL;DR: An overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing can be found in this paper.
Abstract: Quantum dots embedded in photonics nanostructures provide unprecedented control over the interaction between light and matter. This review gives an overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing.

1,240 citations

Journal ArticleDOI
TL;DR: In this article, a single photon with near-unity indistinguishability was generated from quantum dots in electrically controlled cavity structures, which allowed for efficient photon collection while application of an electrical bias cancels charge noise effects.
Abstract: A single photon with near-unity indistinguishability is generated from quantum dots in electrically controlled cavity structures. The cavity allows for efficient photon collection while application of an electrical bias cancels charge noise effects.

1,049 citations

Journal ArticleDOI
TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.

909 citations

Journal ArticleDOI
TL;DR: By s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66, single-photon purity of 99.1%, and photon indistinguishability of 98.5%.
Abstract: This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the National Fundamental Research Program. We acknowledge financial support by the State of Bavaria and the German Ministry of Education and Research (BMBF) within the projects Q.com-H and the Chist-era project SSQN. N. G. acknowledges support from the Danish Research Council for Technology and Production.

839 citations

References
More filters
Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations

Journal ArticleDOI
TL;DR: A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion.
Abstract: A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion. The width of the time-interval distribution, which is largely determined by an interference filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

3,757 citations


"On-demand semiconductor single-phot..." refers background or methods or result in this paper

  • ...This is consistent with the prediction that the pure s-shell resonant excitation can eliminate dephasings associated with the incoherent excitation methods [5, 6]....

    [...]

  • ...Two-photon HOM interference experiments using photons from a single QD [5, 15, 17], as well as from independent sources [18, 19], have not only demonstrated the potential of QDs as single-photon sources, but also revealed the level of dephasing arising from incoherent excitation....

    [...]

  • ...2c) should also happen at a time scale much longer than the 2-ns separation, which is consistent with previous experiments [5, 7, 15, 40]....

    [...]

  • ...If two perfectly indistinguishable photons are superposed on a beam splitter, they will always exit the beam splitter together through the same output port, leading to a zero coincidence rate—the HOM dip [5] which cannot explained by classical optics....

    [...]

  • ...These proposals primarily rely upon a high degree of indistinguishability between individual photons to obtain the Hong-Ou-Mandel (HOM) type interference [5] which is at the heart of photonic controlled logic gates and photon-interference-mediated quantum networking [1–4]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations


"On-demand semiconductor single-phot..." refers background in this paper

  • ...Single photons have been proposed as promising quantum bits (qubits) for quantum communication [1], linear optical quantum computing [2, 3] and as messengers in quantum networks [4]....

    [...]

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: Using pulsed laser excitation of a single quantum dot, a single- photon turnstile device that generates a train of single-photon pulses was demonstrated.
Abstract: Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.

2,224 citations

Journal ArticleDOI
TL;DR: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems as mentioned in this paper, which achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected.
Abstract: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems. This technology achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, which promise exponentially greater computational power for particular tasks. Photonics is destined to have a central role in such technologies owing to the high-speed transmission and outstanding low-noise properties of photons. These technologies may use single photons, quantum states of bright laser beams or both, and will undoubtedly apply and drive state-of-the-art developments in photonics.

1,889 citations


"On-demand semiconductor single-phot..." refers background in this paper

  • ...Single photons have been proposed as promising quantum bits (qubits) for quantum communication [1], linear optical quantum computing [2, 3] and as messengers in quantum networks [4]....

    [...]