scispace - formally typeset
Proceedings ArticleDOI

On design of a robust controller to mitigate CPL effect — A DC micro-grid application

11 Sep 2014-pp 448-454

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, a robust pulse-width modulation-based sliding-mode controller for a dc/dc boost converter feeding the CPL in a typical dc microgrid scenario is proposed which ensures constant power to be delivered to the load.
Abstract: Tightly regulated power electronic converters show negative impedance characteristics and behave as a constant power load (CPL) which sink constant power from their input bus. This incremental negative impedance characteristics of tightly regulated point-of-load converters in multi-converter power systems have a destabilising effect on source converters and may destabilise the whole system. Similar phenomena also occur in many situations like dc microgrid, vehicular power system. Here, the authors present a robust pulse-width modulation-based sliding-mode controller for a dc/dc boost converter feeding the CPL in a typical dc microgrid scenario. A non-linear surface is proposed which ensures constant power to be delivered to the load. The existence of sliding mode and stability of the sliding surface are proved. The proposed controller is implemented using OPAL-RT real-time digital simulator on a laboratory prototype of dc/dc boost converter system. The effectiveness of the proposed sliding-mode controller is validated through simulation and experimental results under different operating conditions.

117 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors present state-of-the-art and research needs in dc distributed power systems in one article, and a review of stability criteria used to study the stability of dc power systems are reviewed with their merits and limitations.
Abstract: The penetration of dc distributed power systems is increasing rapidly in electric power grids and other isolated systems to cater demand for cheap, clean, high quality, and uninterrupted power demand of modern society. DC systems are more efficient and suite better to integrate some of the renewable energy sources, storage units, and dc loads. A dc distributed power system usually consists of large number of power electronic converters connected in cascad0ed configuration to satisfy the power quality and voltage magnitude requirements of the sources and loads. Tightly-regulated power converters in the aforementioned settings exhibit negative incremental impedance and behave as constant power loads (CPLs), and tend to destabilize their feeder systems and upstream converters. The presence of CPLs reduces effective damping of the system leading to instability of the whole system and present significant challenge in the system operation and control. In-depth knowledge of the instability effects of constant power loads (CPLs), available stabilizing techniques and stability analysis methods, is imperious to the young researchers, system designers, system integrators, and practicing engineers working in the field of dc power systems and emerging applications of dc power. This paper is intended to fill this gape by documenting present state of the art and research needs in one article. Modeling, behaviour and effects of typical CPL are discussed and a review of stability criteria used to study the stability of dc power systems are reviewed with their merits and limitations. Furthermore, available literature is reviewed to summarize the techniques to compensate the CPL effect. Finally, discussion and recent challenges in the dc distribution systems.

99 citations


Cites methods from "On design of a robust controller to..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: This brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model through a semidefinite programming model.
Abstract: This brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model. The convex formulation is developed via a semidefinite programming model and is solved by using a MATLAB/CVX package. For comparison purposes the exact nonlinear model is solved in a GAMS package to compare the accuracy and quality of the results obtained with the proposed convex reformulation. Numerical testing is made with a small three-node DC-MG test system as well as DC-MGs from 10 to 150 nodes.

30 citations


Cites background from "On design of a robust controller to..."

  • [...]

Proceedings ArticleDOI

[...]

01 Oct 2014
TL;DR: A sliding-mode controller with a non-linear sliding surface to mitigate negative impedance instabilities caused by the CPLs in dc distribution systems (dc Micro-grids) and ensures stable operation of dc micro-grid system under various disturbances is proposed.
Abstract: Rapidly increasing penetration of renewable energy sources into conventional power distribution systems has led to the rise in power electronic converter dominated power distribution systems. However, it has been a well established that the presence of tightly regulated point-of-load (POL) converters in the power distribution system, which act as Constant Power Loads (CPLs), cause serious stability challenge in spite of ensuring stability of individual converters. In this paper, we propose a sliding-mode controller with a non-linear sliding surface to mitigate negative impedance instabilities caused by the CPLs in dc distribution systems (dc Micro-grids). The stability of proposed surface and existence of sliding modes are proved. A simplified structure of a dc micro-grid system with dc/dc boost converter and CPL is used for the implementation of the proposed controller. Proposed controller is able to mitigate negative impedance instabilities and ensures stable operation of dc micro-grid system under various disturbances. The performance of the proposed controller, under steady state, line and load variations are validated through simulations in MATLAB Simulink environment.

25 citations

Journal ArticleDOI

[...]

24 Nov 2017-Energies
TL;DR: In this paper, a storage based load side compensation technique is used to enhance stability of micro-grids, and two nonlinear control techniques, Sliding Mode Controller (SMC) and Lyapunov Redesign Controller (LRC), are individually implemented to control microgrid system stability with desired robustness.
Abstract: To mitigate the microgrid instability despite the presence of dense Constant Power Load (CPL) loads in the system, a number of compensation techniques have already been gone through extensive research, proposed, and implemented around the world. In this paper, a storage based load side compensation technique is used to enhance stability of microgrids. Besides adopting this technique here, Sliding Mode Controller (SMC) and Lyapunov Redesign Controller (LRC), two of the most prominent nonlinear control techniques, are individually implemented to control microgrid system stability with desired robustness. CPL power is then varied to compare robustness of these two control techniques. This investigation revealed the better performance of the LRC system compared to SMC to retain stability in microgrid with dense CPL load. All the necessary results are simulated in Matlab/Simulink platform for authentic verification. Reasons behind inferior SMC performance and ways to mitigate that are also discussed. Finally, the effectiveness of SMC and LRC systems to attain stability in real microgrids is verified by numerical analysis.

22 citations


References
More filters
Book

[...]

01 Jan 1978
TL;DR: An electric dynamically operated storage element comprises two energy stores and circuitry is provided for applying periodically repeating phase clock pulses simultaneously to the energy stores through the charging circuits.
Abstract: An electric dynamically operated storage element comprises two energy stores. Each store has a charging circuit including a rectifying element and a discharging circuit including a controlled respectively variable resistance connected in series with the rectifying element. Also, circuitry is provided for applying periodically repeating phase clock pulses simultaneously to the energy stores through the charging circuits.

1,789 citations


"On design of a robust controller to..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

08 Jul 2003
TL;DR: A continuous finite-time control scheme for rigid robotic manipulators is proposed using a new form of terminal sliding modes using the Lyapunov stability theory, and theoretical analysis and simulation results show that faster and high-precision tracking performance is obtained.
Abstract: A continuous finite-time control scheme for rigid robotic manipulators is proposed using a new form of terminal sliding modes. The robustness of the controller is established using the Lyapunov stability theory. Theoretical analysis and simulation results show that faster and high-precision tracking performance is obtained compared with the conventional continuous sliding mode control method.

1,580 citations

Book

[...]

01 Jan 1976
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and this is not only this control systems of variable structure.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this control systems of variable structure. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

762 citations


"On design of a robust controller to..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: Sliding-mode and feedback linearization techniques along with large-signal phase plane analysis are presented as methods to analyze, control, and stabilize automotive converters/systems operating with CPLs.
Abstract: Power electronic converters and electric motor drives are being put into use at an increasingly rapid rate in advanced automobiles. However, the new advanced automotive electrical systems employ multivoltage level hybrid ac and dc as well as electromechanical systems that have unique characteristics, dynamics, and stability problems that are not well understood due to the nonlinearity and time dependency of converters and because of their constant power characteristics. The purpose of this paper is to present an assessment of the negative impedance instability concept of the constant power loads (CPLs) in automotive power systems. The main focus of this paper is to analyze and propose design criteria of controllers for automotive converters/systems operating with CPLs. The proposed method is to devise a new comprehensive approach to the applications of power electronic converters and motor drives in advanced automotive systems. Sliding-mode and feedback linearization techniques along with large-signal phase plane analysis are presented as methods to analyze, control, and stabilize automotive converters/systems with CPLs

696 citations


"On design of a robust controller to..." refers background in this paper

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: A new definition describing the quasi-sliding mode as a motion of the system, such that its state always remains in a certain band around the sliding hyperplane, is introduced and two novel reaching laws satisfying conditions of the definition are proposed and applied to the design of appropriate linear control strategies.
Abstract: In this paper, discrete-time quasi-sliding-mode control systems are considered. A new definition describing the quasi-sliding mode as a motion of the system, such that its state always remains in a certain band around the sliding hyperplane, is introduced. Then, two novel reaching laws satisfying conditions of the definition are proposed and applied to the design of appropriate linear control strategies which drive the state of the controlled system to a band around the sliding hyperplane. Consequently, the undesirable chattering and high-frequency switching between different values of the control signal are avoided. The strategies, when compared with previously published results, guarantee better robustness, faster error convergence, and improved steady-state accuracy of the system. Furthermore, better performance of the system is achieved using essentially reduced control effort.

518 citations


"On design of a robust controller to..." refers background in this paper

  • [...]