scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

On genetic algorithms

05 Jul 1995-pp 230-239
TL;DR: C Culling is near optimal for this problem, highly noise tolerant, and the best known a~~roach in some regimes, and some new large deviation bounds on this submartingale enable us to determine the running time of the algorithm.
Abstract: We analyze the performance of a Genetic Type Algorithm we call Culling and a variety of other algorithms on a problem we refer to as ASP. Culling is near optimal for this problem, highly noise tolerant, and the best known a~~roach . . in some regimes. We show that the problem of learning the Ising perception is reducible to noisy ASP. These results provide an example of a rigorous analysis of GA’s and give insight into when and how C,A’s can beat competing methods. To analyze the genetic algorithm, we view it as a special type of submartingale. We prove some new large deviation bounds on this submartingale w~ich enable us to determine the running time of the algorithm.
Citations
More filters
Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations


Cites methods from "On genetic algorithms"

  • ...This algorithm was proposed by Holland in 1992 [13] and simulates Darwnian evolution concepts....

    [...]

Book
01 Jan 1996
TL;DR: An Introduction to Genetic Algorithms focuses in depth on a small set of important and interesting topics -- particularly in machine learning, scientific modeling, and artificial life -- and reviews a broad span of research, including the work of Mitchell and her colleagues.
Abstract: From the Publisher: "This is the best general book on Genetic Algorithms written to date. It covers background, history, and motivation; it selects important, informative examples of applications and discusses the use of Genetic Algorithms in scientific models; and it gives a good account of the status of the theory of Genetic Algorithms. Best of all the book presents its material in clear, straightforward, felicitous prose, accessible to anyone with a college-level scientific background. If you want a broad, solid understanding of Genetic Algorithms -- where they came from, what's being done with them, and where they are going -- this is the book. -- John H. Holland, Professor, Computer Science and Engineering, and Professor of Psychology, The University of Michigan; External Professor, the Santa Fe Institute. Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics -- particularly in machine learning, scientific modeling, and artificial life -- and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

9,933 citations

Book
06 Oct 2003
TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Abstract: Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

8,091 citations


Cites methods from "On genetic algorithms"

  • ...Baum et al. (1995), analyzing a similar model, show that the population size N should be about √ G(logG)2 to make hitchhikers unlikely to arise....

    [...]

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.

7,090 citations

Journal ArticleDOI
TL;DR: Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously are investigated and suggested to be extended to higher dimensional and more difficult multiobjective problems.
Abstract: In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. Since genetic algorithms (GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias toward some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously. The proof-of-principle results obtained on three problems used by Schaffer and others suggest that the proposed method can be extended to higher dimensional and more difficult multiobjective problems. A number of suggestions for extension and application of the algorithm are also discussed.

6,411 citations

References
More filters
Book
01 Sep 1988
TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required

52,797 citations

01 Jan 1989
TL;DR: This book brings together the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields. Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required.

33,034 citations

Book
01 Jan 1975
TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Abstract: Name of founding work in the area. Adaptation is key to survival and evolution. Evolution implicitly optimizes organisims. AI wants to mimic biological optimization { Survival of the ttest { Exploration and exploitation { Niche nding { Robust across changing environments (Mammals v. Dinos) { Self-regulation,-repair and-reproduction 2 Artiicial Inteligence Some deenitions { "Making computers do what they do in the movies" { "Making computers do what humans (currently) do best" { "Giving computers common sense; letting them make simple deci-sions" (do as I want, not what I say) { "Anything too new to be pidgeonholed" Adaptation and modiication is root of intelligence Some (Non-GA) branches of AI: { Expert Systems (Rule based deduction)

32,573 citations

Book ChapterDOI
TL;DR: In this article, upper bounds for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt are derived for certain sums of dependent random variables such as U statistics.
Abstract: Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr {S – ES ≥ nt} depend only on the endpoints of the ranges of the summands and the mean, or the mean and the variance of S. These results are then used to obtain analogous inequalities for certain sums of dependent random variables such as U statistics and the sum of a random sample without replacement from a finite population.

8,655 citations

Book
01 Jan 1991
TL;DR: A particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets - is explored.
Abstract: The use of randomness is now an accepted tool in Theoretical Computer Science but not everyone is aware of the underpinnings of this methodology in Combinatorics - particularly, in what is now called the probabilistic Method as developed primarily by Paul Erdoős over the past half century. Here I will explore a particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets. A central point will be the evolution of these problems from the purely existential proofs of Erdős to the algorithmic aspects of much interest to this audience.

6,594 citations