# On Linear Transmission Systems

TL;DR: The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate of single antenna, single carrier linear modulation systems, and a iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature.

Abstract: This thesis is divided into two parts. Part I analyzes the information rate of single antenna, single carrier linear modulation systems. The information rate of a system is the maximum number of bits that can be transmitted during a channel usage, and is achieved by Gaussian symbols. It depends on the underlying pulse shape in a linear modulated signal and also the signaling rate, the rate at which the Gaussian symbols are transmitted. The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate. Part II of the thesis is devoted to multiple antenna systems (MIMO), and more specifically to linear precoders for MIMO channels. Linear precoding is a practical scheme for improving the performance of a MIMO system, and has been studied intensively during the last four decades. In practical applications, the symbols to be transmitted are taken from a discrete alphabet, such as quadrature amplitude modulation (QAM), and it is of interest to find the optimal linear precoder for a certain performance measure of the MIMO channel. The design problem depends on the particular performance measure and the receiver structure. The main difficulty in finding the optimal precoders is the discrete nature of the problem, and mostly suboptimal solutions are proposed. The problem has been well investigated when linear receivers are employed, for which optimal precoders were found for many different performance measures. However, in the case of the optimal maximum likelihood (ML) receiver, only suboptimal constructions have been possible so far. Part II starts by proposing new novel, low complexity, suboptimal precoders, which provide a low bit error rate (BER) at the receiver. Later, an iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature. The resulting precoders turn out to exhibit a certain structure, which is then analyzed and proved to be optimal for large alphabets.

...read more

##### Citations

2 citations

##### References

42,928 citations

^{1}

12,396 citations

10,383 citations

^{1}

10,358 citations