scispace - formally typeset
Journal ArticleDOI

On sequential Monte Carlo sampling methods for Bayesian filtering

Reads0
Chats0
TLDR
An overview of methods for sequential simulation from posterior distributions for discrete time dynamic models that are typically nonlinear and non-Gaussian, and how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature are shown.
Abstract
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literatures these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking

TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
BookDOI

Sequential Monte Carlo methods in practice

TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Journal ArticleDOI

Kernel-based object tracking

TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Journal ArticleDOI

An introduction to MCMC for machine learning

TL;DR: This purpose of this introductory paper is to introduce the Monte Carlo method with emphasis on probabilistic machine learning and review the main building blocks of modern Markov chain Monte Carlo simulation.
Book Chapter

A Tutorial on Particle Filtering and Smoothing: Fifteen years later

TL;DR: A complete, up-to-date survey of particle filtering methods as of 2008, including basic and advanced particle methods for filtering as well as smoothing.
References
More filters
Journal ArticleDOI

Novel approach to nonlinear/non-Gaussian Bayesian state estimation

TL;DR: An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters, represented as a set of random samples, which are updated and propagated by the algorithm.
Book

Stochastic Processes and Filtering Theory

TL;DR: In this paper, a unified treatment of linear and nonlinear filtering theory for engineers is presented, with sufficient emphasis on applications to enable the reader to use the theory for engineering problems.
Journal Article

Optimal Filtering

TL;DR: This book helps to fill the void in the market and does that in a superb manner by covering the standard topics such as Kalman filtering, innovations processes, smoothing, and adaptive and nonlinear estimation.
Journal ArticleDOI

On optimal e ∞ to e ∞ filtering

TL;DR: Taking a model matching approach, suboptimal solutions are presented that stem from the resulting l ∞ -induced norm-minimization problem.
Journal ArticleDOI

Filtering via Simulation: Auxiliary Particle Filters

TL;DR: This article analyses the recently suggested particle approach to filtering time series and suggests that the algorithm is not robust to outliers for two reasons: the design of the simulators and the use of the discrete support to represent the sequentially updating prior distribution.
Related Papers (5)