scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On spinodal decomposition

01 Sep 1961-Acta Metallurgica (John Wiley & Sons, Ltd)-Vol. 9, Iss: 9, pp 795-801
TL;DR: In this article, the stability of a solid solution to all infinitesimal composition fluctuations is considered, taking surface tension and elastic energy into account, and it is found that for infinite isotropic solids, free from imperfections, the spinodal marks the limit of metastability to such fluctuations only if there is no change in molar volume with composition.
About: This article is published in Acta Metallurgica.The article was published on 1961-09-01. It has received 2762 citations till now. The article focuses on the topics: Spinodal & Spinodal decomposition.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Abstract: Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation for the development of careful experiments which can be used to test the theories and exhibit new phenomena.

2,689 citations

01 Jan 1979
TL;DR: In this paper, a microscopic diffusional theory for the motion of a curved antiphase boundary is presented, where the interfacial velocity is linearly proportional to the mean curvature of the boundary, but unlike earlier theories the constant of proportionality does not include the specific surface free energy.
Abstract: Abstract A microscopic diffusional theory for the motion of a curved antiphase boundary is presented. The interfacial velocity is found to be linearly proportional to the mean curvature of the boundary, but unlike earlier theories the constant of proportionality does not include the specific surface free energy, yet the diffusional dissipation of free energy is shown to be equal to the reduction in total boundary free energy. The theory is incorporated into a model for antiphase domain coarsening. Experimental measurements of domain coarsening kinetics in Fe-Al alloys were made over a temperature range where the specific surface free energy was varied by more than two orders of magnitude. The results are consistent with the theory; in particular, the domain coarsening kinetics do not have the temperature dependence of the specific surface free energy.

2,414 citations

Journal ArticleDOI
TL;DR: The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials as discussed by the authors, which is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces.
Abstract: ■ Abstract The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

2,334 citations

Journal ArticleDOI
TL;DR: In this paper, a new generalization of the linear theory of spinodal decomposition is formulated and by considering a "nearly uniform" fluid, some useful results for the long-wavelength behaviour of the liquid structure factor of various monatomic liquids are obtained.
Abstract: Recent theoretical work on the microscopic structure and surface tension of the liquid-vapour interface of simple (argon-like) fluids is critically reviewed. In particular, the form of pairwise intermolecular correlations in the liquid surface and the capillary wave treatment of the interface are examined in some detail. It is argued that conventional capillary wave theory, which leads to divergences in the width of the density profile, is unsatisfactory for describing all the equilibrium aspects of the interface. The density functional formalism which has been developed to study the liquid-vapour interface can also be profitably applied to other problems in the statistical mechanics of non-uniform fluids; here a new generalization of the ‘linear’ theory of spinodal decomposition is formulated and by considering a ‘nearly uniform’ fluid, some useful results for the long-wavelength behaviour of the liquid structure factor of various monatomic liquids are obtained. Some other topics of current inte...

2,202 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc, and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2.
Abstract: It is shown that the free energy of a volume V of an isotropic system of nonuniform composition or density is given by : NV∫V [f 0(c)+κ(▿c)2]dV, where NV is the number of molecules per unit volume, ▿c the composition or density gradient, f 0 the free energy per molecule of a homogeneous system, and κ a parameter which, in general, may be dependent on c and temperature, but for a regular solution is a constant which can be evaluated. This expression is used to determine the properties of a flat interface between two coexisting phases. In particular, we find that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc , and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2 . The predicted interfacial free energy and its temperature dependence are found to be in agreement with existing experimental data. The possibility of using optical measurements of the interface thickness to provide an additional check of our treatment is briefly discussed.

8,720 citations

Journal ArticleDOI
TL;DR: In this article, the saddle point in the expression derived in Paper I (see reference 8) for the free energy of a nonuniform system was used to derive the properties of a critical nucleus in a two-component metastable fluid.
Abstract: By finding the saddle point in the expression derived in Paper I (see reference 8) for the free energy of a nonuniform system, we have derived the properties of a critical nucleus in a two‐component metastable fluid.At very low supersaturations, we find that the properties of the nucleus approach those predicted by the classical theory that assumes the nucleus to be homogeneous with an interfacial energy that does not vary with curvature. However, with increasing supersaturation, the following changes occur in the properties of the critical nucleus. (a) The work required for its formation becomes progressively less than that given by the classical theory, and approaches continuously to zero at the spinodal. (b) The interface with the exterior phase becomes more diffuse until eventually no part of the nucleus is even approximately homogeneous. (c) The composition at the center of the nucleus approaches that of the exterior phase. (d) The radius and excess concentration in the nucleus at first decrease, the...

1,607 citations

Journal ArticleDOI
M Hillert1
TL;DR: In this article, a solid-solution model allowing compositional variations in one dimension is developed from the zeroth approximation of nearest-neighbor interactions, which predicts the existence of periodically modulated structures in order as well as in precipitation systems.

437 citations

Journal ArticleDOI
TL;DR: In this article, the formation of modulated structures with periodic variations in composition due to a simple interchange of atoms has been studied in copper-nickel-iron alloys as a function of composition, temperature and time.

95 citations

Journal ArticleDOI
TL;DR: In this paper, a modification of the model of lattice modulations as proposed by Hargreaves accounts for all observed features in the early stages of the precipitation process in gold-platinum alloys by means of X-rays.

61 citations