scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On the aspect of plane of appearance of Jahn-Teller and Renner-Teller intersections in tetra-atomic system-A case study with HCNO +

27 Feb 2020-International Journal of Quantum Chemistry (John Wiley & Sons, Ltd)-Vol. 120, Iss: 11, pp 26195
TL;DR: In this paper, the authors investigate the relationship between JTCI and RTPI in the linear tetra-atomic molecular system with slightly bent HCNOplus, a motivated choice of tetraatomic with all four different atoms.
Abstract: Search for configuration space with welldefined topological (Berry) phases corresponding to Jahn Teller (JT) conical intersection (CI) and Renner Teller(RT) parabolic intersection (PI) in the linear tetra-atomic molecular system on introduction of bending, reveal the interesting aspect that these potential intersections may appear in molecular plane as well as out of the molecular plane. While understanding this aspect is important for following the class of phenomena led by potential intersections, till date studies on molecular systems including pairs like (C2H2plus , HCNH) as well as (N2H2plus , HBNHplus ), have not been able to clarify the issue. The present paper embodies calculation of non-adiabatic coupling terms (NACTs) involving four low lying states of slightly bent HCNOplus , a motivated choice of tetra-atomic with all four different atoms, to study this aspect associated with JTCI and RTPI in slightly bent linear system. The plane of appearance of these effects, has been advocated to be related to electronic configuration of the concerned states of the molecular system.
References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Abstract: A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters R in its Hamiltonian Ĥ(R), will acquire a geometrical phase factor exp{iγ(C)} in addition to the familiar dynamical phase factor. An explicit general formula for γ(C) is derived in terms of the spectrum and eigenstates of Ĥ(R) over a surface spanning C. If C lies near a degeneracy of Ĥ, γ(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration γ(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

7,425 citations

Journal ArticleDOI
TL;DR: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird as discussed by the authors.
Abstract: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird. Mehratomige Molekeln werden in entsprechender Weise als starre „Kreisel“ angesehen.2) Dieser Standpunkt erlaubt es, die einfachsten Gesetze der Bandenspektren und der spezifischen Warme mehratomiger Gase zu erklaren. Das nachste Stadium1) last die Annahme starrer Verbindungen zwischen den Atomen fallen und berucksichtigt die Kernschwingungen, zunachst als harmonische Schwingungen; dabie ergenben sich nach Sponer3) und Kratzer4) Zusammenhange zwischen den einzelnen Banden eines Bandensystems.

4,131 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if the total electronic state of orbital and spin motion is degenerate, then a non-linear configuration of the molecule will be unstable unless the degeneracy is the special twofold one (discussed by Kramers 1930) which can occur only when the molecule contains an odd number of electrons.
Abstract: In a previous paper (Jahn and Teller 1937) the following theorem was established: A configuration of a polyatomic molecule for an electronic state having orbital degeneracy cannot be stable with respect to all displacements of the nuclei unless in the original configuration the nuclei all lie on a straight line. The proof given of this theorem took no account of the electronic spin, and in the present paper the justification of this is investigated. An extension of the theorem to cover additional degeneracy arising from the spin is established, which shows that if the total electronic state of orbital and spin motion is degenerate, then a non-linear configuration of the molecule will be unstable unless the degeneracy is the special twofold one (discussed by Kramers 1930) which can occur only when the molecule contains an odd number of electrons. The additional instability caused by the spin degeneracy alone, however, is shown to be very small and its effect for all practical purposes negligible. The possibility of spin forces stabilizing a non-linear configuration which is unstable owing to orbital degeneracy is also investigated, and it is shown that this is not possible except perhaps for molecules containing heavy atoms for which the spin forces are large. Thus whilst a symmetrical nuclear configuration in a degenerate orbital state might under exceptional circumstances be rendered stable by spin forces, it is not possible for the spin-orbit interaction to cause instability of an orbitally stable state. 1—General theorem for molecules with spin Just as before we must see how the symmetry of the molecular framework determines whether the energy of a degenerate electronic state with spin depends linearly upon nuclear displacements. This is again determined by the existence of non-vanishing perturbation matrix elements which are linear in the nuclear displacements. These matrix elements are integrals involving the electronic wave functions with spin and the nuclear dis­placements, and we deduce as before from their transformation properties whether for a given molecular symmetry they can be different from zero.

2,539 citations

01 Jan 1985

1,278 citations

Journal ArticleDOI
Felix T. Smith1
TL;DR: In this paper, the Born-Oppenheimer separation into electronic and heavy-particle coordinates is re-examined, and the coupled equations that result for the heavyparticle motion are expressed in a particularly simple form.
Abstract: The equations of the general Born-Oppenheimer separation into electronic and heavy-particle coordinates are re-examined, and the coupled equations that result for the heavy-particle motion are expressed in a particularly simple form. This is accomplished by introducing a generalized matrix operator for the effective momentum associated with the heavy particles; the matrix portion of this operator represents a coupling of the nuclear momentum with the electronic motion. The commutator between the momentum and potential matrices is a force matrix, which provides an alternative means of evaluating the momentum matrix. The momentum coupling has both radial and angular parts; the angular momentum coupling agrees with Thorson's expression. In the usual adiabatic molecular representation, the potential energy matrix is diagonalized, and all the coupling is thrown into the radial and angular momentum matrices. For collision problems it is often more important to diagonalize the radial momentum matrix, putting the radial off-diagonal coupling into the potential matrix; this generates a family of diabatic representations, the most important of which dissociates to unique separated atom states. This standard diabatic representations has the properties called for by Lichten, is uniquely defined even with the inclusion of configuration interaction, and leads immediately to the Landau-Zener-Stueckelberg limiting case under appropriate conditions.

711 citations