scispace - formally typeset
Search or ask a question
Proceedings Article

On the capacity of a cellular CDMA system

01 Jan 1991-Vol. 40, Iss: 2, pp 303-312
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >
Citations
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations


Cites background from "On the capacity of a cellular CDMA ..."

  • ...The passive elements of a network include the sites (physical space, rooftops, towers, masts and pylons), the backhaul connection, power supplies, and air-conditioning....

    [...]

Journal ArticleDOI
TL;DR: The proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate, and the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Abstract: Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.

3,309 citations


Cites background from "On the capacity of a cellular CDMA ..."

  • ...This philosophical approach of distilling other-cell interference to a fixed value has also been advocated for CDMA in [5] and used in the landmark paper [6], where other-cell interference was modeled as a constant factor of the total interference....

    [...]

Journal ArticleDOI
Roy D. Yates1
TL;DR: It is shown that systems in which transmitter powers are subject to maximum power limitations share these common properties, which permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized.
Abstract: In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations is fixed, (2) minimum power assignment where a user is iteratively assigned to the base station at which its signal to interference ratio is highest, and (3) diversity reception where a user's signal is combined from several or perhaps all base stations. For the above models, the uplink power control problem can be reduced to finding a vector p of users' transmitter powers satisfying p/spl ges/I(p) where the jth constraint p/sub j//spl ges/I/sub j/(p) describes the interference that user j must overcome to achieve an acceptable connection. This work unifies results found for these systems by identifying common properties of the interference constraints. It is also shown that systems in which transmitter powers are subject to maximum power limitations share these common properties. These properties permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized. >

2,526 citations

Journal ArticleDOI
28 Apr 1996
TL;DR: There is a constant power gap between the spectral efficiency of the proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER).
Abstract: We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity.

2,355 citations


Cites background from "On the capacity of a cellular CDMA ..."

  • ...Choosing the constellation corresponds to no data transmission....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: The proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate, and the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Abstract: Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.

3,309 citations

Journal ArticleDOI
Roy D. Yates1
TL;DR: It is shown that systems in which transmitter powers are subject to maximum power limitations share these common properties, which permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized.
Abstract: In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations is fixed, (2) minimum power assignment where a user is iteratively assigned to the base station at which its signal to interference ratio is highest, and (3) diversity reception where a user's signal is combined from several or perhaps all base stations. For the above models, the uplink power control problem can be reduced to finding a vector p of users' transmitter powers satisfying p/spl ges/I(p) where the jth constraint p/sub j//spl ges/I/sub j/(p) describes the interference that user j must overcome to achieve an acceptable connection. This work unifies results found for these systems by identifying common properties of the interference constraints. It is also shown that systems in which transmitter powers are subject to maximum power limitations share these common properties. These properties permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized. >

2,526 citations

Journal ArticleDOI
28 Apr 1996
TL;DR: There is a constant power gap between the spectral efficiency of the proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER).
Abstract: We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity.

2,355 citations

Journal ArticleDOI
TL;DR: The Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone is obtained, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels.
Abstract: We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is "water-pouring" in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large capacity penalty in severe fading.

2,163 citations