scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On the geometry of metric measure spaces. II

01 Jul 2006-Acta Mathematica (Kluwer Academic Publishers)-Vol. 196, Iss: 1, pp 133-177
TL;DR: In this article, a curvature-dimension condition CD(K, N) for metric measure spaces is introduced, which is more restrictive than the curvature bound for Riemannian manifolds.
Abstract: We introduce a curvature-dimension condition CD (K, N) for metric measure spaces. It is more restrictive than the curvature bound $\underline{{{\text{Curv}}}} {\left( {M,{\text{d}},m} \right)} > K$ (introduced in [Sturm K-T (2006) On the geometry of metric measure spaces. I. Acta Math 196:65–131]) which is recovered as the borderline case CD(K, ∞). The additional real parameter N plays the role of a generalized upper bound for the dimension. For Riemannian manifolds, CD(K, N) is equivalent to $${\text{Ric}}_{M} {\left( {\xi ,\xi } \right)} > K{\left| \xi \right|}^{2} $$ and dim(M) ⩽ N. The curvature-dimension condition CD(K, N) is stable under convergence. For any triple of real numbers K, N, L the family of normalized metric measure spaces (M, d, m) with CD(K, N) and diameter ⩽ L is compact. Condition CD(K, N) implies sharp version of the Brunn–Minkowski inequality, of the Bishop–Gromov volume comparison theorem and of the Bonnet–Myers theorem. Moreover, it implies the doubling property and local, scale-invariant Poincare inequalities on balls. In particular, it allows to construct canonical Dirichlet forms with Gaussian upper and lower bounds for the corresponding heat kernels.

Content maybe subject to copyright    Report

Citations
More filters
Book
02 Jan 2013
TL;DR: In this paper, the authors provide a detailed description of the basic properties of optimal transport, including cyclical monotonicity and Kantorovich duality, and three examples of coupling techniques.
Abstract: Couplings and changes of variables.- Three examples of coupling techniques.- The founding fathers of optimal transport.- Qualitative description of optimal transport.- Basic properties.- Cyclical monotonicity and Kantorovich duality.- The Wasserstein distances.- Displacement interpolation.- The Monge-Mather shortening principle.- Solution of the Monge problem I: global approach.- Solution of the Monge problem II: Local approach.- The Jacobian equation.- Smoothness.- Qualitative picture.- Optimal transport and Riemannian geometry.- Ricci curvature.- Otto calculus.- Displacement convexity I.- Displacement convexity II.- Volume control.- Density control and local regularity.- Infinitesimal displacement convexity.- Isoperimetric-type inequalities.- Concentration inequalities.- Gradient flows I.- Gradient flows II: Qualitative properties.- Gradient flows III: Functional inequalities.- Synthetic treatment of Ricci curvature.- Analytic and synthetic points of view.- Convergence of metric-measure spaces.- Stability of optimal transport.- Weak Ricci curvature bounds I: Definition and Stability.- Weak Ricci curvature bounds II: Geometric and analytic properties.

5,524 citations

Journal ArticleDOI
TL;DR: In this paper, a notion of a length space X having nonnegative N-Ricci curvature, for N 2 [1;1], or having 1-RICci curvatures bounded below by K, for K2 R, was given.
Abstract: We dene a notion of a measured length space X having nonnegative N-Ricci curvature, for N 2 [1;1), or having1-Ricci curvature bounded below byK, forK2 R. The denitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of probability measures. We show that these properties are preserved under measured Gromov-Hausdor limits. We give geometric and analytic consequences. This paper has dual goals. One goal is to extend results about optimal transport from the setting of smooth Riemannian manifolds to the setting of length spaces. A second goal is to use optimal transport to give a notion for a measured length space to have Ricci curvature bounded below. We refer to [11] and [44] for background material on length spaces and optimal transport, respectively. Further bibliographic notes on optimal transport are in Appendix F. In the present introduction we motivate the questions that we address and we state the main results. To start on the geometric side, there are various reasons to try to extend notions of curvature from smooth Riemannian manifolds to more general spaces. A fairly general setting is that of length spaces, meaning metric spaces (X;d) in which the distance between two points equals the inmum of the lengths of curves joining the points. In the rest of this introduction we assume that X is a compact length space. Alexandrov gave a good notion of a length space having \curvature bounded below by K", with K a real number, in terms of the geodesic triangles in X. In the case of a Riemannian manifold M with the induced length structure, one recovers the Riemannian notion of having sectional curvature bounded below by K. Length spaces with Alexandrov curvature bounded below by K behave nicely with respect to the GromovHausdor topology on compact metric spaces (modulo isometries); they form

1,357 citations


Cites methods from "On the geometry of metric measure s..."

  • ...After the writing of the paper was essentially completed we learned of related work by Karl-Theodor Sturm [41, 42 ]....

    [...]

Book
21 Oct 2015
TL;DR: In this paper, the primal and dual problems of one-dimensional problems are considered. But they do not consider the dual problems in L^1 and L^infinity theory.
Abstract: Preface.- Primal and Dual Problems.- One-Dimensional Issues.- L^1 and L^infinity Theory.- Minimal Flows.- Wasserstein Spaces.- Numerical Methods.- Functionals over Probabilities.- Gradient Flows.- Exercises.- References.- Index.

1,015 citations


Cites background from "On the geometry of metric measure s..."

  • ...This gave rise to a wide theory of analysis in metric measure spaces, where this convexity property was chosen as a definition for the curvature bounds (see [219, 288, 289])....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors define the Ricci curvature of metric spaces in terms of how much small balls are closer (in Wasserstein transportation distance) than their centers are.

728 citations

Journal ArticleDOI
TL;DR: For Riemannian manifolds with a measure (M, g, edvolg) as mentioned in this paper showed that the Ricci curvature and volume comparison can be improved when the Bakry-Emery Ricci tensor is bounded from below.
Abstract: For Riemannian manifolds with a measure (M, g, edvolg) we prove mean curvature and volume comparison results when the ∞-Bakry-Emery Ricci tensor is bounded from below and f is bounded or ∂rf is bounded from below, generalizing the classical ones (i.e. when f is constant). This leads to extensions of many theorems for Ricci curvature bounded below to the Bakry-Emery Ricci tensor. In particular, we give extensions of all of the major comparison theorems when f is bounded. Simple examples show the bound on f is necessary for these results.

572 citations


Cites background from "On the geometry of metric measure s..."

  • ...on Ricf = λgfor some constant λis exactly the gradient Ricci soliton equation, which plays an important role in the theory of Ricci flow. Moreover Ricf has a natural extension to metric measure spaces [21, 35, 36]. When fis a constant function, the Bakry-Emery Ricci tensor is the Ricci tensor so it is natural to investigate what geometric and topological results for the Ricci tensor extend to the Bakry-Emery R...

    [...]

References
More filters
Book
15 Oct 1999
TL;DR: In this article, the authors describe the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries.
Abstract: This book describes the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I is an introduction to the geometry of geodesic spaces. In Part II the basic theory of spaces with upper curvature bounds is developed. More specialized topics, such as complexes of groups, are covered in Part III. The book is divided into three parts, each part is divided into chapters and the chapters have various subheadings. The chapters in Part III are longer and for ease of reference are divided into numbered sections.

5,009 citations


"On the geometry of metric measure s..." refers methods in this paper

  • ...For proofs and further details we refer to [ BH99 ], [Gr99], and [BBI01]....

    [...]

Book
01 Mar 2003
TL;DR: In this paper, the metric side of optimal transportation is considered from a differential point of view on optimal transportation, and the Kantorovich duality of the optimal transportation problem is investigated.
Abstract: Introduction The Kantorovich duality Geometry of optimal transportation Brenier's polar factorization theorem The Monge-Ampere equation Displacement interpolation and displacement convexity Geometric and Gaussian inequalities The metric side of optimal transportation A differential point of view on optimal transportation Entropy production and transportation inequalities Problems Bibliography Table of short statements Index.

4,808 citations


"On the geometry of metric measure s..." refers background or methods in this paper

  • ...For further reading we recommend [16], [29], [45], [55] and [56]....

    [...]

  • ...Villani [55] which gives an excellent survey on the whole field....

    [...]

  • ...[55]....

    [...]

  • ...(i), (ii) See [45], [55]....

    [...]

Posted Content
TL;DR: In this article, a monotonic expression for Ricci flow, valid in all dimensions and without curvature assumptions, is presented, interpreted as an entropy for a certain canonical ensemble.
Abstract: We present a monotonic expression for the Ricci flow, valid in all dimensions and without curvature assumptions. It is interpreted as an entropy for a certain canonical ensemble. Several geometric applications are given. In particular, (1) Ricci flow, considered on the space of riemannian metrics modulo diffeomorphism and scaling, has no nontrivial periodic orbits (that is, other than fixed points); (2) In a region, where singularity is forming in finite time, the injectivity radius is controlled by the curvature; (3) Ricci flow can not quickly turn an almost euclidean region into a very curved one, no matter what happens far away. We also verify several assertions related to Richard Hamilton's program for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing with local lower curvature bound.

3,091 citations


"On the geometry of metric measure s..." refers background in this paper

  • ...Perelman [43] in the context of his work on the geometrization conjecture for 3-manifolds....

    [...]

Book
01 Jan 1989
TL;DR: In this paper, the authors introduce the concept of Logarithmic Sobolev inequalities and Gaussian bounds on heat kernels, as well as Riemannian manifolds.
Abstract: Preface 1. Introductory concepts 2. Logarithmic Sobolev inequalities 3. Gaussian bounds on heat kernels 4. Boundary behaviour 5. Riemannian manifolds References Notation index Index.

2,579 citations


Additional excerpts

  • ...[36], [10], [14] and [47]....

    [...]

Book
01 Jul 2001
TL;DR: In this article, a large-scale Geometry Spaces of Curvature Bounded Above Spaces of Bounded Curvatures Bounded Below Bibliography Index is presented. But it is based on the Riemannian metric space.
Abstract: Metric Spaces Length Spaces Constructions Spaces of Bounded Curvature Smooth Length Structures Curvature of Riemannian Metrics Space of Metric Spaces Large-scale Geometry Spaces of Curvature Bounded Above Spaces of Curvature Bounded Below Bibliography Index.

2,508 citations


"On the geometry of metric measure s..." refers background in this paper

  • ...For proofs and further details we refer to [7], [22], and [8]....

    [...]

  • ...We summarize some of the basic properties of these metric spaces and refer to [9], [22], [8] and [44] for further details....

    [...]