scispace - formally typeset
Search or ask a question
Journal ArticleDOI

On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

TL;DR: In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users and developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of N OMA depends critically on the choices of the users' targeted data rates and allocated power.
Abstract: In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users. The developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of NOMA depends critically on the choices of the users' targeted data rates and allocated power. In particular, a wrong choice of the targeted data rates and allocated power can lead to a situation in which the user's outage probability is always one, i.e. the user's targeted quality of service will never be met.
Citations
More filters
Journal ArticleDOI
TL;DR: A systematic treatment of non-orthogonal multiple access, from its combination with MIMO technologies to cooperative NOMA, as well as the interplay between N OMA and cognitive radio is provided.
Abstract: As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP LTE and is envisioned to be an essential component of 5G mobile networks. The key feature of NOMA is to serve multiple users at the same time/frequency/ code, but with different power levels, which yields a significant spectral efficiency gain over conventional orthogonal MA. The article provides a systematic treatment of this newly emerging technology, from its combination with MIMO technologies to cooperative NOMA, as well as the interplay between NOMA and cognitive radio. This article also reviews the state of the art in the standardization activities concerning the implementation of NOMA in LTE and 5G networks.

1,687 citations


Cites background from "On the Performance of Non-Orthogona..."

  • ...Non-orthogonal multiple access (NOMA) has been recently re cognized as a promising multiple access (MA) technique to significantly improve the spectral efficie ncy of mobile communication networks [1-4]....

    [...]

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations


Cites methods from "On the Performance of Non-Orthogona..."

  • ...NOMA: NOMA [132], [133], [134] could be described as two-stage beamforming where a MU-MIMO technique (usually ZF) transmits beams in K directions and users in the same beams are separated using SIC receivers in the power domain....

    [...]

  • ...2) NOMA: NOMA [131]–[133] could be described as twostage beamforming where a MU-MIMO technique (usually ZF) transmits beams in K directions and users in the same beams are separated using SIC receivers in the power domain....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future challenges and future research challenges.
Abstract: Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth-generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the context of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.

1,551 citations

Journal ArticleDOI
TL;DR: This paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NomA.
Abstract: Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for performance enhancement in next-generation cellular communications. Compared to orthogonal frequency division multiple access, which is a well-known high-capacity orthogonal multiple access technique, NOMA offers a set of desirable benefits, including greater spectrum efficiency. There are different types of NOMA techniques, including power-domain and code-domain. This paper primarily focuses on power-domain NOMA that utilizes superposition coding at the transmitter and successive interference cancellation at the receiver. Various researchers have demonstrated that NOMA can be used effectively to meet both network-level and user-experienced data rate requirements of fifth-generation (5G) technologies. From that perspective, this paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NOMA. In addition, this paper discusses how NOMA performs when it is integrated with various proven wireless communications techniques, such as cooperative communications, multiple-input multiple-output, beamforming, space-time coding, and network coding among others. Furthermore, this paper discusses several important issues on NOMA implementation and provides some avenues for future research.

1,406 citations


Cites methods from "On the Performance of Non-Orthogona..."

  • ...[20], if users’ data rates and assigned power are chosen properly, NOMA can offer better outage performance than other OMA techniques....

    [...]

Journal ArticleDOI
TL;DR: Both analytical and numerical results are provided to demonstrate that F-NOMA can offer a larger sum rate than orthogonal MA, and the performance gain of F- NOMA over conventional MA can be further enlarged by selecting users whose channel conditions are more distinctive.
Abstract: Nonorthogonal multiple access (NOMA) represents a paradigm shift from conventional orthogonal multiple-access (MA) concepts and has been recognized as one of the key enabling technologies for fifth-generation mobile networks. In this paper, the impact of user pairing on the performance of two NOMA systems, i.e., NOMA with fixed power allocation (F-NOMA) and cognitive-radio-inspired NOMA (CR-NOMA), is characterized. For F-NOMA, both analytical and numerical results are provided to demonstrate that F-NOMA can offer a larger sum rate than orthogonal MA, and the performance gain of F-NOMA over conventional MA can be further enlarged by selecting users whose channel conditions are more distinctive. For CR-NOMA, the quality of service (QoS) for users with poorer channel conditions can be guaranteed since the transmit power allocated to other users is constrained following the concept of cognitive radio networks. Because of this constraint, CR-NOMA exhibits a different behavior compared with F-NOMA. For example, for the user with the best channel condition, CR-NOMA prefers to pair it with the user with the second best channel condition, whereas the user with the worst channel condition is preferred by F-NOMA.

1,391 citations


Cites methods from "On the Performance of Non-Orthogona..."

  • ...The design of NOMA for uplink transmissions has been proposed in [4], and the performance of NOMA with randomly deployed mobile stations has been characterized in [5]....

    [...]

References
More filters
MonographDOI
26 Sep 2001
TL;DR: 1. The numerical evaluation of expressions 2. Linear systems of equations 3. Interpolation and numerical differentiation 4. Numerical integration 5. Univariate non linear equations 6. Systems of nonlinear equations.
Abstract: Numerical analysis is an increasingly important link between pure mathematics and its application in science and technology. This textbook provides an introduction to the justification and development of constructive methods that provide sufficiently accurate approximations to the solution of numerical problems, and the analysis of the influence that errors in data, finite-precision calculations, and approximation formulas have on results, problem formulation and the choice of method. It also serves as an introduction to scientific programming in MATLAB, including many simple and difficult, theoretical and computational exercises. A unique feature of this book is the consequent development of interval analysis as a tool for rigorous computation and computer assisted proofs, along with the traditional material.

3,746 citations


"On the Performance of Non-Orthogona..." refers methods in this paper

  • ...In the following the Gaussian-Chebyshev quadrature will be used to find an approximation for the above integral [4]....

    [...]

Book
01 Jan 1956

1,961 citations

BookDOI
28 Jan 2005

1,825 citations

Journal ArticleDOI
TL;DR: This work proposes a scheme that constructs M random beams and that transmits information to the users with the highest signal-to-noise-plus-interference ratios (SINRs), which can be made available to the transmitter with very little feedback.
Abstract: In multiple-antenna broadcast channels, unlike point-to-point multiple-antenna channels, the multiuser capacity depends heavily on whether the transmitter knows the channel coefficients to each user. For instance, in a Gaussian broadcast channel with M transmit antennas and n single-antenna users, the sum rate capacity scales like Mloglogn for large n if perfect channel state information (CSI) is available at the transmitter, yet only logarithmically with M if it is not. In systems with large n, obtaining full CSI from all users may not be feasible. Since lack of CSI does not lead to multiuser gains, it is therefore of interest to investigate transmission schemes that employ only partial CSI. We propose a scheme that constructs M random beams and that transmits information to the users with the highest signal-to-noise-plus-interference ratios (SINRs), which can be made available to the transmitter with very little feedback. For fixed M and n increasing, the throughput of our scheme scales as MloglognN, where N is the number of receive antennas of each user. This is precisely the same scaling obtained with perfect CSI using dirty paper coding. We furthermore show that a linear increase in throughput with M can be obtained provided that M does not not grow faster than logn. We also study the fairness of our scheduling in a heterogeneous network and show that, when M is large enough, the system becomes interference dominated and the probability of transmitting to any user converges to 1/n, irrespective of its path loss. In fact, using M=/spl alpha/logn transmit antennas emerges as a desirable operating point, both in terms of providing linear scaling of the throughput with M as well as in guaranteeing fairness.

1,450 citations


"On the Performance of Non-Orthogona..." refers background or methods in this paper

  • ...By applying Corollary A1 in [6], it is straightforward to show that...

    [...]

  • ...Particularly, following steps similar to those used in [6], the solution is given by...

    [...]

  • ...It is worth pointing out that the terms , , are decreasing at a rate faster than , but the use of the above expression can ensure that the existing results in [5] and [6] can be applied straightforwardly....

    [...]

Proceedings ArticleDOI
25 Nov 2013
TL;DR: It is shown under multiple configurations that the system-level performance achieved by NOMA is superior to that for OMA, and key link adaptation functionalities of the LTE radio interface such as adaptive modulation and coding, time/frequency-domain scheduling, and outer loop link adaptation are shown.
Abstract: As a promising downlink multiple access scheme for further LTE enhancement and future radio access (FRA), this paper investigates the system-level performance of non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) on the receiver side. The goal is to clarify the potential gains of NOMA over orthogonal multiple access (OMA) such as OFDMA, taking into account key link adaptation functionalities of the LTE radio interface such as adaptive modulation and coding (AMC), hybrid automatic repeat request (HARQ), time/frequency-domain scheduling, and outer loop link adaptation (OLLA), in addition to NOMA specific functionalities such as dynamic multi-user power allocation. Based on computer simulations, we show under multiple configurations that the system-level performance achieved by NOMA is superior to that for OMA.

832 citations


"On the Performance of Non-Orthogona..." refers background in this paper

  • ...Particularly non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access techniques for fifth generation (5G) networks due to its superior spectral efficiency [2]....

    [...]