scispace - formally typeset

Journal Article

On the Voltage-Based Control of Robot Manipulators

01 Oct 2008-International Journal of Control Automation and Systems-Vol. 6, Iss: 5, pp 702-712

AbstractThis paper presents a novel approach for controlling electrically driven robot manipulators based on voltage control. The voltage-based control is preferred comparing to torque-based control. This approach is robust in the presence of manipulator uncertainties since it is free of the manipulator model. The control law is very simple, fast response, efficient, robust, and can be used for high-speed tracking purposes. The feedback linearization is applied on the electrical equations of the dc motors to cancel the current terms which transfer all manipulator dynamics to the electrical circuit of motor. The control system is simulated for position control of the PUMA 560 robot driven by permanent magnet dc motors.

Topics: DC motor (57%), Control system (56%), Feedback linearization (56%), Electrical network (53%), Torque (50%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: This paper presents a novel robust decentralized control of electrically driven robot manipulators by adaptive fuzzy estimation and compensation of uncertainty. The proposed control employs voltage control strategy, which is simpler and more efficient than the conventional strategy, the so-called torque control strategy, due to being free from manipulator dynamics. It is verified that the proposed adaptive fuzzy system can model the uncertainty as a nonlinear function of the joint position error and its time derivative. The adaptive fuzzy system has an advantage that does not employ all system states to estimate the uncertainty. The stability analysis, performance evaluation, and simulation results are presented to verify the effectiveness of the method. A comparison between the proposed Nonlinear Adaptive Fuzzy Control (NAFC) and a Robust Nonlinear Control (RNC) is presented. Both control approaches are robust with a very good tracking performance. The NAFC is superior to the RNC in the face of smooth uncertainty. In contrast, the RNC is superior to the NAFC in the face of sudden changes in uncertainty. The case study is an articulated manipulator driven by permanent magnet dc motors.

99 citations


Cites background or methods from "On the Voltage-Based Control of Rob..."

  • ...To solve the aforementioned problems, voltage control strategy has been devoted to the electrically driven robot manipulators [11]....

    [...]

  • ...The proposed control approach is based on the voltage control strategy [11] using the model of motor (10) which is much simpler than the model of robot manipulator (1)....

    [...]


Journal ArticleDOI
Abstract: So far, control of robot manipulators has frequently been developed based on the torque-control strategy. However, two drawbacks may occur. First, torque-control laws are inherently involved in complexity of the manipulator dynamics characterized by nonlinearity, largeness of model, coupling, uncertainty and joint flexibility. Second, actuator dynamics may be excluded from the controller design. The novelty of this paper is the use of voltage control strategy to develop robust tracking control of electrically driven flexible-joint robot manipulators. In addition, a novel method of uncertainty estimation is introduced to obtain the control law. The proposed control approach has important advantages over the torque-control approaches due to being free of manipulator dynamics. It is computationally simple, decoupled, well-behaved and has a fast response. The control design includes two interior loops; the inner loop controls the motor position and the outer loop controls the joint position. Stability analysis is presented and performance of the control system is evaluated. Effectiveness of the proposed control approach is demonstrated by simulations using a three-joint articulated flexible-joint robot driven by permanent magnet dc motors.

91 citations


Cites background from "On the Voltage-Based Control of Rob..."

  • ...It is found that the voltage control strategy [ 25 ] is superior to the torque-control strategy in the robust control of rigid manipulators [26] in terms of simplicity in the controller design and performance of the control system....

    [...]


Journal ArticleDOI
Abstract: This paper is devoted to the nonlinear tracking control of electrically driven flexible-joint manipulators using the voltage control strategy. Despite the torque control laws that are involved in the complexity of manipulator dynamics, the proposed control law is free from manipulator dynamics. This novelty is for adopting the voltage control strategy to derive a simple robust adaptive control under both structured and unstructured uncertainty. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts in the form of decentralized control. The control method is justified by the stability analysis and simulated on a flexible-joint electrically driven robot manipulator.

57 citations


Cites background or methods from "On the Voltage-Based Control of Rob..."

  • ...The voltage control strategy is found to be superior to the torque control strategy for being free from manipulator dynamics [ 23 , 24]....

    [...]

  • ...To control such a complicated system we propose a novel simple control using the voltage control strategy [ 23 , 24]....

    [...]


Journal ArticleDOI
01 Feb 2017-Robotica
TL;DR: This paper intuitively shows that in order to perform repetitive tasks; the least common multiple (LCM) of fundamental period durations of the desired trajectories of the joints is a proper value for the fundamental period duration of the Fourier series expansion.
Abstract: This paper presents a novel control algorithm for electrically driven robot manipulators. The proposed control law is simple and model-free based on the voltage control strategy with the decentralized structure and only joint position feedback. It works for both repetitive and non-repetitive tasks. Recently, some control approaches based on the uncertainty estimation using the Fourier series have been presented. However, the proper value for the fundamental period duration has been left as an open problem. This paper addresses this issue and intuitively shows that in order to perform repetitive tasks; the least common multiple (LCM) of fundamental period durations of the desired trajectories of the joints is a proper value for the fundamental period duration of the Fourier series expansion. Selecting the LCM results in the least tracking error. Moreover, the truncation error is compensated by the proposed control law to make the tracking error as small as possible. Adaptation laws for determining the Fourier series coefficients are derived according to the stability analysis. The case study is an SCARA robot manipulator driven by permanent magnet DC motors. Simulation results and comparisons with a voltage-based controller using adaptive neuro-fuzzy systems show the effectiveness of the proposed control approach in tracking various periodic trajectories. Moreover, the experimental results on a real SCARA robot manipulator verify the successful practical implementation of the proposed controller.

46 citations


Cites background from "On the Voltage-Based Control of Rob..."

  • ...Using (52) and its time derivative, the lumped uncertainty F(t) in (18) can be rewritten as F(t) = F1(q)̇q̈ + F2(q, q̇)q̈ + F3(q, q̇)q̇ + F4(q, q̇) (53)...

    [...]

  • ...in which F(t) = RIa + Lİa + (Kbr−1 − In)q̇ (18)...

    [...]


Journal ArticleDOI
Abstract: This paper deals with the robust task-space control of electrically driven robot manipulators using voltage control strategy. In conventional robust control approaches, the uncertainty bound is needed to design the control law. Usually, this bound is proposed conservatively which may increase the amplitude of the control signal and damage the system. Moreover, calculation of this bound requires some feedbacks of the system states which providing them may be expensive. The novelty of this paper is proposing a robust control law in which the uncertainty bound is calculated by Legendre polynomials. Compared to conventional robust controllers, the proposed controller is simpler, less computational and requires less feedbacks. Simulation results and comparisons verify the effectiveness of the proposed control approach applied on a SCARA robot manipulator driven by permanent magnet DC motors.

46 citations


References
More filters

Book
01 Jan 1986
TL;DR: This chapter discusses Jacobians: Velocities and Static Forces, Robot Programming Languages and Systems, and Manipulator Dynamics, which focuses on the role of Jacobians in the control of Manipulators.
Abstract: 1. Introduction. 2. Spatial Descriptions and Transformations. 3. Manipulator Kinematics. 4. Inverse Manipulator Kinematics. 5. Jacobians: Velocities and Static Forces. 6. Manipulator Dynamics. 7. Trajectory Generation. 8. Manipulator Mechanism Design. 9. Linear Control of Manipulators. 10. Nonlinear Control of Manipulators. 11. Force Control of Manipulators. 12. Robot Programming Languages and Systems. 13. Off-Line Programming Systems.

5,891 citations


"On the Voltage-Based Control of Rob..." refers background in this paper

  • ...Many industrial robots use a form of so called PID control law [ 21 ] as...

    [...]


Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,667 citations


"On the Voltage-Based Control of Rob..." refers background in this paper

  • ...The electrical circuit of the permanent magnet dc motor provides the following equation [ 14 ]...

    [...]

  • ...So far, most industrial robots are controlled by independent joint control strategy while robots are high nonlinear multi-input/multi-output systems with complex couplings [ 14 ]....

    [...]


Book
01 May 1991
TL;DR: Invention to Robotics provides both an introductory text for students coming new to the field and a survey of the state of the art for professional practitioners.
Abstract: From the Publisher: Introduction to Robotics provides both an introductory text for students coming new to the field and a survey of the state of the art for professional practitioners.

2,314 citations


"On the Voltage-Based Control of Rob..." refers background in this paper

  • ...Many industrial robots use a form of so called PID control law [21] as...

    [...]


Journal ArticleDOI
TL;DR: The Robotics Toolbox is a software package that allows a MATLAB user to readily create and manipulate datatypes fundamental to robotics such as homogeneous transformations, quaternions and trajectories.
Abstract: The Robotics Toolbox is a software package that allows a MATLAB user to readily create and manipulate datatypes fundamental to robotics such as homogeneous transformations, quaternions and trajectories. Functions provided, for arbitrary serial-link manipulators, include forward and inverse kinematics, Jacobians, and forward and inverse dynamics. This article introduces the Toolbox in tutorial form, with examples chosen to demonstrate a range of capabilities. The complete Toolbox and documentation is freely available via anonymous ftp.

838 citations


"On the Voltage-Based Control of Rob..." refers methods in this paper

  • ...The simulation model of PUMA 560 [24] is used in the control system....

    [...]


Book
07 Apr 1988
Abstract: Model-Based Control of a Robot Manipulator presents the first integrated treatment of many of the most important recent developments in using detailed dynamic models of robots to improve their control. The authors' work on automatic identification of kinematic and dynamic parameters, feedforward position control, stability in force control, and trajectory learning has significant implications for improving performance in future robot systems. All of the main ideas discussed in this book have been validated by experiments on a direct-drive robot arm.The book addresses the issues of building accurate robot models and of applying them for high performance control. It first describes how three sets of models - the kinematic model of the links and the inertial models of the links and of rigid-body loads - can be obtained automatically using experimental data. These models are then incorporated into position control, single trajectory learning, and force control. The MIT Serial Link Direct Drive Arm, on which these models were developed and applied to control, is one of the few manipulators currently suitable for testing such concepts.Contents: Introduction. Direct Drive Arms. Kinematic Calibration. Estimation of Load Inertial Parameters. Estimation of Link Inertial Parameters. Feedforward and Computed Torque Control. Model-Based Robot Learning. Dynamic Stability Issues in Force Control. Kinematic Stability Issues in Force Control. Conclusion.Chae An is Research Staff Member, IBM T.J. Watson Research Center, Christopher Atkeson is an Assistant Professor and John Hollerbach is an Associate Professor in the MIT Department of Brain and Cognitive Sciences and the MIT Artificial Intelligence Laboratory. Model-Based Control of a Robot Manipulator is included in the Artificial Intelligence Series edited by Patrick Winston and Michael Brady.

452 citations