scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
29 Jul 2010-Oncogene
TL;DR: The results suggest that the miR-200 family has a tumor-suppressor function by negatively regulating EGF-driven cell invasion, viability, apoptosis and cell cycle progression in breast cancer.
Abstract: The genes encoding microRNAs of the human miR-200 family map to fragile chromosomal regions and are frequently downregulated upon tumor progression. Although having been reported to regulate epithelial-to-mesenchymal transition and transforming growth factor-beta-driven cell invasion, the role of the miR-200 family in EGF-driven breast cancer cell invasion, viability, apoptosis and cell cycle progression is still unknown. In particular, there is no study comparing the roles of the two clusters of this miRNA family. In this study, we show for the first time that miR-200 family members differentially regulate EGF-driven invasion, viability, apoptosis and cell cycle progression of breast cancer cells. We showed that, all miR-200 family members regulate EGF-driven invasion, with the miR-200bc/429 cluster showing stronger effects than the miR-200a/141 cluster. Furthermore, expression of the miR-200a/141 cluster results in G1 arrest supported by increased p27/Kip1 and decreased cyclin dependent kinase 6 expression. In contrast, expression of the 200bc/429 cluster decreases G1 population and increases G2/M phase, in line with the observed reduction of p27/Kip1 and upregulation of the inhibitory phosphorylation of Cdc25C, respectively. To test the hypothesis that phenotypical differences observed between the two clusters are caused by differential targeting spectrums, we performed genome-wide microarray profiling in combination with gain-of-function studies. This identified phospholipase C gamma 1 (PLCG1), which was downregulated only by the miR-200bc/429 cluster, as a potential candidate contributing to these phenotypical differences. Luciferase reporter assays validated PLCG1 as a direct functional target of miR-200bc/429 cluster, but not of miR-200a/141 cluster. Finally, loss of PLCG1 in part mimicked the effect of miR-200bc/429 overexpression in viability, apoptosis and EGF-driven cell invasion of breast cancer cells. Our results suggest that the miR-200 family has a tumor-suppressor function by negatively regulating EGF-driven cell invasion, viability and cell cycle progression in breast cancer.

203 citations

Journal ArticleDOI
24 Sep 2009-Oncogene
TL;DR: This is the first study to show that E2F1 is negatively regulated by miR-330 and also show that miR -330 induces apoptosis in prostate cancer cells through E1F1-mediated suppression of Akt phosphorylation.
Abstract: MicroRNAs (miRNAs) make up a novel class of gene regulators; they function as oncogenes or tumor suppressors by targeting tumor-suppressor genes or oncogenes. A recent study that analysed a large number of human cancer cell lines showed that miR-330 is a potential tumor-suppressor gene. However, the function and molecular mechanism of miR-330 in determining the aggressiveness of human prostate cancer has not been studied. Here, we show that miR-330 is significantly lower expressed in human prostate cancer cell lines than in nontumorigenic prostate epithelial cells. Bioinformatics analyses reveal a conserved target site for miR-330 in the 3'-untranslated region (UTR) of E2F1 at nucleotides 1018-1024. MiR-330 significantly suppressed the activity of a luciferase reporter containing the E2F1-3'-UTR in the cells. This activity could be abolished with the transfection of anti-miR-330 or mutated E2F1-3'-UTR. In addition, the expression level of miR-330 and E2F1 was inversely correlated in cell lines and prostate cancer specimens. After overexpressing of miR-330 in PC-3 cells, cell growth was suppressed by reducing E2F1-mediated Akt phosphorylation and thereby inducing apoptosis. Collectively, this is the first study to show that E2F1 is negatively regulated by miR-330 and also show that miR-330 induces apoptosis in prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation.

203 citations

Journal ArticleDOI
TL;DR: Investigation of the stability of miRNAs isolated from clinical samples of B lymphocytes by the most commonly utilized method based on a Trizol/TRI-Reagent solution found high stability of isolated miRN as well as respective cDNAs.

203 citations

Journal ArticleDOI
TL;DR: Circulating miR-21 could serve as a potential broad-spectrum serum-based biomarker for the detection of some solid cancers and its sensitivity and specificity were significantly higher than the currently used tumor markers.
Abstract: MicroRNA-21 (miR-21) was reported as being overexpressed in various human cancerous tissues, but its expression in cancerous serum was not unanimous in different laboratories. On the base of optimizing experimental design and improving trial protocol, we wanted to know whether the circulating microRNA-21 was dysregulated in the common solid cancers. Using SYBR green real-time quantitative reverse transcription-PCR, we detected the expression of circulating miR-21 in 174 patients with solid cancers and 39 normal control subjects, including breast cancer, esophageal cancer, gastric cancer, colorectal cancer, lung cancer. Furthermore, we analyzed the associations between miR-21 expression and clinical features of patients. miR-21 was significantly overexpressed in human solid cancerous serum relative to normal control (P < 0.001), and its sensitivity and specificity were significantly higher than the currently used tumor markers. High miR-21 expression was not correlated with gender, age, clinical stage, and lymph node metastasis status. Circulating miR-21 could serve as a potential broad-spectrum serum-based biomarker for the detection of some solid cancers.

202 citations

Journal ArticleDOI
TL;DR: There is widespread aberrant expression of mature and/or precursor microRNAs in cancer cells, as micro RNAs are deregulated consequent to chromosomal alterations and other genomic abnormalities.
Abstract: There is widespread aberrant expression of mature and/or precursor microRNAs in cancer cells, as microRNAs are deregulated consequent to chromosomal alterations and other genomic abnormalities. The identification of such abnormalities has a clear diagnostic and prognostic significance, and there are ever increasing examples of links between certain human cancers and modifications at microRNA loci.

201 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations