scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: It is found that reduction of endogenous ERα protein levels and suppression of cancer cell growth could be achieved in MCF‐7 cells by miR‐22 overexpression in a way that can be recapitulated by the introduction of specific small interfering RNA against ERα.
Abstract: Previous studies have suggested that microRNAs (miRNAs) may play important roles in tumorigenesis, but little is known about the functions of most miRNAs in cancer development. In the present study, we set up a cell-based screen using a luciferase reporter plasmid carrying the whole ∼ 4.7 kb 3′-UTR of estrogen receptor α (ERα) mRNA cotransfected with a synthetic miRNA expression library to identify potential ERα-targeting miRNAs. Among all the miRNAs, miR-22 was found to repress robustly the luciferase signal in both HEK-293T and ERα-positive MCF-7 cells. Mutation of the target site was found to abrogate this repression effect of miR-22, whereas antagonism of endogenous miR-22 in MDA-MB-231 cells resulted in elevated reporter signals. We assessed the miR-22 expression patterns in five breast cancer cell lines and 23 clinical biopsies and revealed that there is a significant inverse association between the miR-22 levels and ERα protein expression. To evaluate the potential of miR-22 as a potential therapeutic intervention, we found that reduction of endogenous ERα protein levels and suppression of cancer cell growth could be achieved in MCF-7 cells by miR-22 overexpression in a way that can be recapitulated by the introduction of specific small interfering RNA against ERα. The phenomena can be rescued by the reintroduction of ERα. Taken together, our data indicate that miR-22 was frequently downregulated in ERα-positive human breast cancer cell lines and clinical samples. Direct involvement in the regulation of ERα may be one of the mechanisms through which miR-22 could play a pivotal role in the pathogenesis of breast cancer.

165 citations

Journal ArticleDOI
TL;DR: In this article, the role of miRNAs in cancer stem cells is only poorly understood, and the authors report miRNA expression profiles of glioblastoma stem cell-containing CD133+ cell populations.
Abstract: Cancer stem cells or cancer initiating cells are believed to contribute to cancer recurrence after therapy. MicroRNAs (miRNAs) are short RNA molecules with fundamental roles in gene regulation. The role of miRNAs in cancer stem cells is only poorly understood. Here, we report miRNA expression profiles of glioblastoma stem cell-containing CD133+ cell populations. We find that miR-9, miR-9* (referred to as miR-9/9*), miR-17 and miR-106b are highly abundant in CD133+ cells. Furthermore, inhibition of miR-9/9* or miR-17 leads to reduced neurosphere formation and stimulates cell differentiation. Calmodulin-binding transcription activator 1 (CAMTA1) is a putative transcription factor, which induces the expression of the anti-proliferative cardiac hormone natriuretic peptide A (NPPA). We identify CAMTA1 as an miR-9/9* and miR-17 target. CAMTA1 expression leads to reduced neurosphere formation and tumour growth in nude mice, suggesting that CAMTA1 can function as tumour suppressor. Consistently, CAMTA1 and NPPA expression correlate with patient survival. Our findings could provide a basis for novel strategies of glioblastoma therapy.

165 citations

Journal ArticleDOI
TL;DR: The newly identified miR-342/DNMT1 link provides a new, potential therapeutic target for the treatment of CRC and describes a new mechanism for the regulation of DNMT1 and aberrant DNA hypermethylation in CRC.
Abstract: Overexpressed DNA methyltransferase 1 (DNMT1) strongly contributes to tumor suppressor gene silencing in colorectal cancer (CRC). However, the underlying mechanism of DNMT1 overexpression is still unclear. MicroRNAs (miRNA) have been implicated as gene regulators controlling diverse biological processes, including carcinogenesis. In this study, we investigated whether some miRNA is involved in the regulation of DNMT1 and thus play a functional role in CRC. Our results showed that miR-342 was downregulated in CRC tissues and cell lines. Restoration of miR-342 resulted in a dramatic reduction of the expression of DNMT1 at both messenger RNA and protein levels by directly targeting its 3' untranslated region. This in turn reactivated ADAM23, Hint1, RASSF1A and RECK genes via promoter demethylation. Furthermore, the enhanced expression of miR-342 could significantly inhibit SW480 cell proliferation in vitro (P = 0.006). Further investigation demonstrated G(0)/G(1) cell cycle arrest in SW480 cells, which was associated with an upregulation of p21 and downregulation of cyclinE and CDK2. Overexpression of miR-342 also inhibited SW480 cell invasion. The in vivo antitumor effect was evaluated in SW480 cells with lentivirus-mediated expression of miR-342. Results showed that overexpression of miR-342 significantly inhibited tumor growth and lung metastasis in nude mice (P = 0.034). Our findings describe a new mechanism for the regulation of DNMT1 and aberrant DNA hypermethylation in CRC. This is also the first report to demonstrate that miR-342 may act as a tumor suppressor gene in CRC development. The newly identified miR-342/DNMT1 link provides a new, potential therapeutic target for the treatment of CRC.

165 citations

Journal ArticleDOI
25 Nov 2009-PLOS ONE
TL;DR: This study aims to identify miRNAs with consistent differential expression in multiple tumor types using a novel data analysis approach and develops scores for comparing miRNA expression in matched sample data based on a rigorous characterization of the distribution of order statistics over a discrete state set.
Abstract: Background: microRNAs (miRNAs) regulate target genes at the post-transcriptional level and play important roles in cancer pathogenesis and development. Variation amongst individuals is a significant confounding factor in miRNA (or other) expression studies. The true character of biologically or clinically meaningful differential expression can be obscured by inter-patient variation. In this study we aim to identify miRNAs with consistent differential expression in multiple tumor types using a novel data analysis approach. Methods: Using microarrays we profiled the expression of more than 700 miRNAs in 28 matched tumor/normal samples from 8 different tumor types (breast, colon, liver, lung, lymphoma, ovary, prostate and testis). This set is unique in putting emphasis on minimizing tissue type and patient related variability using normal and tumor samples from the same patient. We develop scores for comparing miRNA expression in the above matched sample data based on a rigorous characterization of the distribution of order statistics over a discrete state set, including exact p-values. Specifically, we compute a Rank Consistency Score (RCoS) for every miRNA measured in our data. Our methods are also applicable in various other contexts. We compare our methods, as applied to matched samples, to paired t-test and to the Wilcoxon Signed Rank test. Results: We identify consistent (across the cancer types measured) differentially expressed miRNAs. 41 miRNAs are underexpressed in cancer compared to normal, at FDR (False Discovery Rate) of 0.05 and 17 are over-expressed at the same FDR level. Differentially expressed miRNAs include known oncomiRs (e.g miR-96) as well as miRNAs that were not previously universally associated with cancer. Specific examples include miR-133b and miR-486-5p, which are consistently down regulated and mir-629* which is consistently up regulated in cancer, in the context of our cohort. Data is available in GEO. Software is available at: http://bioinfo.cs.technion.ac.il/people/zohar/RCoS/

165 citations

Journal ArticleDOI
TL;DR: A new study proves that reduction in microRNA expression does indeed promote tumorigenesis, changing the way the authors think about cancer.
Abstract: Human cancers are characterized by widespread reduction in microRNA gene expression, but what role does this have in the pathobiology of the disease? A new study proves that reduction in microRNA expression does indeed promote tumorigenesis, changing the way we think about cancer.

165 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations